JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON STABILITY OF BANACH FRAMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON STABILITY OF BANACH FRAMES
Jain Pawan Kumar; Kaushik Shiv Kumar; Vashisht Lalit Kumar;
  PDF(new window)
 Abstract
Some stability theorems (Paley-Wiener type) for Banach frames in Banach spaces have been derived.
 Keywords
frame;Banach frame;stability;
 Language
English
 Cited by
1.
ON FRAME SYSTEMS IN BANACH SPACES, International Journal of Wavelets, Multiresolution and Information Processing, 2009, 07, 01, 1  crossref(new windwow)
2.
Banach Λ-Frames for Operator Spaces, Advances in Pure Mathematics, 2014, 04, 08, 373  crossref(new windwow)
3.
The stability of Banach frames in Banach spaces, Acta Mathematica Sinica, English Series, 2010, 26, 12, 2369  crossref(new windwow)
4.
Some characterizations of fusion Banach frames, International Journal of Wavelets, Multiresolution and Information Processing, 2015, 13, 03, 1550015  crossref(new windwow)
 References
1.
R. Balan, Stability theorems for Fourier frames and wavelet Riesz bases, J. Fourier Anal. Appl. 3 (1997), no. 5, 499-504 crossref(new window)

2.
P. G. Casazza, D. Han, and D. R. Larson, Frames for Banach spaces, Contem. Math. 247 (1999), 149-182 crossref(new window)

3.
O. Christensen, A Paley-Wiener Theorem for frames, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2199-2201

4.
O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33-47

5.
R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645 crossref(new window)

6.
I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271-1283 crossref(new window)

7.
R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. crossref(new window)

8.
S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 160-173. crossref(new window)

9.
H. G. Feichtinger and K. Grochenig, A unified approach to atomic decompositions via integrable group representations, In: Proc. Conf. 'Function Spaces and Applications', Lecture Notes Math. 1302, Berling - Heidelberg - New York: Springer (1988), 52-73 crossref(new window)

10.
K. Grochenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112 (1991), no. 1, 1-41 crossref(new window)

11.
I. Singer, Bases in Banach space-II, Springer Verlag, 1981

12.
J. Zhang, Stability of wavelet frames and Riesz bases, with respect to dilations and translations, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1113-1121 crossref(new window)