JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A GENERALIZATION OF INSERTION-OF-FACTORS-PROPERTY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A GENERALIZATION OF INSERTION-OF-FACTORS-PROPERTY
Hwang, Seo-Un; Jeon, Young-Cheol; Park, Kwang-Sug;
  PDF(new window)
 Abstract
We in this note introduce the concept of g-IFP rings which is a generalization of IFP rings. We show that from any IFP ring there can be constructed a right g-IFP ring but not IFP. We also study the basic properties of right g-IFP rings, constructing suitable examples to the situations raised naturally in the process.
 Keywords
g-IFP ring;IFP ring;annihilator;2-primal ring;
 Language
English
 Cited by
1.
On a Class of Semicommutative Rings,;;;

Kyungpook mathematical journal, 2011. vol.51. 3, pp.283-291 crossref(new window)
1.
On a Class of Semicommutative Rings, Kyungpook mathematical journal, 2011, 51, 3, 283  crossref(new windwow)
 References
1.
H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368 crossref(new window)

2.
G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and as-sociated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), 102-129

3.
K. R. Goodearl, von Neumann Regular Rings, Pitman, London, 1979 crossref(new window)

4.
J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76

5.
Y. Hirano, Some studies on strongly $\pi$-regular rings, Math. J. Okayama Univ. 20 (1978), no. 2, 141-149

6.
N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223 crossref(new window)

7.
J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham, 1966

8.
Y. Lee, H. K. Kim, and C. Huh, Questions on 2-primal rings, Comm. Algebra 26 (1998), no. 2, 595-600 crossref(new window)

9.
G. Marks, Direct product and power series formations over 2-primal rings, in (eds. S. K. Jain, S. T. Rizvi) Advances in Ring Theory, Trends in Math., Birkhauser, Boston (1997), 239-245

10.
L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73

11.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 crossref(new window)