JOURNAL BROWSE
Search
Advanced SearchSearch Tips
KUCERA GROUP OF CIRCULAR UNITS IN FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
KUCERA GROUP OF CIRCULAR UNITS IN FUNCTION FIELDS
Ahn, Jae-Hyun; Jung, Hwan-Yup;
  PDF(new window)
 Abstract
Let [T] be the polynomial ring over a finite field [T] and K=(T) its field of fractions. Let be a fixed prime divisor of q-1. Let J be a finite set of monic irreducible polynomials with deg (mod . In this paper we define the group of circular units in K=k in the sense of Kucera [4] and compute the index of in the full unit group .
 Keywords
Kucera group;circular units;function fields;
 Language
English
 Cited by
1.
ON THE PARITY OF THE CLASS NUMBER OF SOME REAL BIQUADRATIC FUNCTION FIELD,;;

충청수학회지, 2010. vol.23. 1, pp.169-176
 References
1.
B. Angles, On Hilbert class field towers of global function fields, Drinfeld modules, modular schemes and applications (Alden-Biesen, 1996), 261-271, World Sci. Publ., River Edge, NJ, 1997

2.
J. Ahn, S. Bae, and H. Jung, Cyclotomic units and Stickelberger ideals of global function fields, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1803-1818 crossref(new window)

3.
J. Ahn and H. Jung, Cyclotomic units and divisibility of the class number of function fields, J. Korean Math. Soc. 39 (2002), no. 5, 765-773 crossref(new window)

4.
R. Kucera, On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory 56 (1996), no. 1, 139-166 crossref(new window)

5.
W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), no. 2, 181-234

6.
M. Rosen, Number theory in function fields, Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002