JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTES ON A NON-ASSOCIATIVE ALGEBRA WITH EXPONENTIAL FUNCTIONS II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTES ON A NON-ASSOCIATIVE ALGEBRA WITH EXPONENTIAL FUNCTIONS II
Choi, Seul-Hee;
  PDF(new window)
 Abstract
For the evaluation algebra , then of the evaluation algebra is found in the paper [15]. For , we find of the evaluation algebra in this paper. We show that there is a non-associative algebra which is the direct sum of derivation invariant subspaces.
 Keywords
simple;Witt algebra;graded;radical homogeneous equivalent component;order;derivation invariant;
 Language
English
 Cited by
1.
NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS III,;

대한수학회논문집, 2008. vol.23. 2, pp.153-159 crossref(new window)
1.
Non-associative Algebras with n-Exponential Functions, Algebra Colloquium, 2009, 16, 01, 85  crossref(new windwow)
 References
1.
M. H. Ahmadi, K. B. Nam, and J. Pakinathan, Lie admissible non-associative algebras, Algebra Colloq. 12 (2005), no. 1, 113-120 crossref(new window)

2.
S. H. Choi and K. B. Nam, The derivation of a restricted Weyl type non-associative algebra, Hadronic J. 28 (2005), no. 3, 287-295

3.
S. H. Choi, Derivation of symmetric non-associative algebra I, Algebras Groups Geom. 22(2005), no. 3, 341-352

4.
S. H. Choi, Derivations of a restricted Weyl type algebra I, Accepted, Rocky Mountain Journal of Mathematics, 2005

5.
T. Ikeda, N. Kawamoto, and K. B. Nam, A class of simple subalgebras of Generalized Witt algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG (2000), 189-202

6.
V. G. Kac, Description of filtered Lie algebra with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 800-834

7.
N. Kawamoto, A. Mitsukawa, K. B. Nam, and M. O. Wang, The automorphisms of generalized Witt type Lie algebras, J. Lie Theory 13 (2003), no. 2, 573-578

8.
I. Kaplansky, The Virasoro algebra, Comm. Math. Phys. 86 (1982), no. 1, 49-54 crossref(new window)

9.
K. B. Nam, On some non-associative algebras using additive groups, Southeast Asian Bull. Math. 27 (2003), no. 3, 493-500

10.
K. B. Nam and S. H. Choi, On the derivations of non-associative Weyl-type algebras, Appear, Southeast Asian Bull. Math., 2005

11.
K. B. Nam, Y. Kim, and M. O. Wang, Weyl-type non-associative algebras I, Advances in algebra towards millenninum problems, SAS Publishers (2005), 147-155

12.
K. B. Nam and M. O. Wang, Notes on some non-associative algebras, J. Appl. Algebra Discrete Struct. 1 (2003), no. 3, 159-164

13.
A. N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izv. 3 (1969), 707-722 crossref(new window)

14.
R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995

15.
M. O. Wang, J. G. Hwang, and K. S. Lee, Some results on non-associative algebras, Bull. Korean Math. Soc., Accepted, 2006 crossref(new window)