JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF REGRESSION FUNCTION UNDER NA ASSUMPTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF REGRESSION FUNCTION UNDER NA ASSUMPTIONS
Liang, Han-Ying; Qi, Yan-Yan;
  PDF(new window)
 Abstract
Consider the heteroscedastic regression model $Y_i
 Keywords
regression function;NA error;wavelet estimator;asymptotic normality;
 Language
English
 Cited by
1.
Asymptotic normality of wavelet estimator for strong mixing errors,;;

Journal of the Korean Statistical Society, 2009. vol.38. 4, pp.383-390 crossref(new window)
1.
Berry–Esseen bounds for wavelet estimator in a regression model with linear process errors, Statistics & Probability Letters, 2011, 81, 1, 103  crossref(new windwow)
2.
Asymptotic normality of wavelet estimator in heteroscedastic model with α-mixing errors, Journal of Systems Science and Complexity, 2011, 24, 4, 725  crossref(new windwow)
3.
CLT of wavelet estimator in semiparametric model with correlated errors, Journal of Systems Science and Complexity, 2012, 25, 3, 567  crossref(new windwow)
4.
Berry–Esseen type bounds of estimators in a semiparametric model with linear process errors, Journal of Multivariate Analysis, 2009, 100, 1, 1  crossref(new windwow)
5.
Asymptotic normality of wavelet estimator for strong mixing errors, Journal of the Korean Statistical Society, 2009, 38, 4, 383  crossref(new windwow)
6.
Asymptotic properties of wavelet estimators in semiparametric regression models under dependent errors, Journal of Multivariate Analysis, 2013, 122, 251  crossref(new windwow)
7.
The Berry-Esseen bounds of wavelet estimator for regression model whose errors form a linear process with a ρ-mixing, Journal of Inequalities and Applications, 2016, 2016, 1  crossref(new windwow)
8.
A Berry-Esseen Type Bound of Wavelet Estimator Under Linear Process Errors Based on a Strong Mixing Sequence, Communications in Statistics - Theory and Methods, 2013, 42, 22, 4146  crossref(new windwow)
9.
Asymptotics of a wavelet estimator in the nonparametric regression model with repeated measurements under a NA error process, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2015, 109, 1, 153  crossref(new windwow)
10.
The Recursive Kernel Distribution Function Estimator Based on Negatively and Positively Associated Sequences, Communications in Statistics - Theory and Methods, 2010, 39, 20, 3585  crossref(new windwow)
11.
Asymptotic normality of variance estimator in a heteroscedastic model with dependent errors, Journal of Nonparametric Statistics, 2011, 23, 2, 351  crossref(new windwow)
 References
1.
K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions, Comm. Statist. A-Theory Methods 10 (1981), no. 12, 1183-1196 crossref(new window)

2.
A. Antoniadis, G. Gregoire, and I. W. McKeague, Wavelet methods for curve estimation, J. Amer. Statist. Assoc. 89 (1994), no. 428, 1340-1353 crossref(new window)

3.
J.-I. Baek, T.-S. Kim, and H.-Y. Liang, On the convergence of moving average processes under dependent conditions, Aust. N. Z. J. Stat. 45 (2003), no. 3, 331-342 crossref(new window)

4.
Z. Cai and G. G. Roussas, Berry-Esseen bounds for smooth estimator of a distribution function under association, First NIU Symposium on Statistical Sciences (De Kalb, IL, 1996). J. Nonparametr. Statist. 11 (1999), no. 1-3, 79-106 crossref(new window)

5.
M. H. Chen, Z. Ren, and S. Hu, Strong consistency of a class of estimators in a partial linear model, Acta Math. Sinica (Chin. Ser.) 41 (1998), no. 2, 429-438

6.
Z. J. Chen, H. Y. Liang, and Y. F. Ren, Strong consistency of estimators in a heteroscedastic model under NA samples, Tongji Daxue Xuebao Ziran Kexue Ban 31 (2003), no. 8, 1001-1005

7.
D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, Density estimation by wavelet thresholding, Ann. Statist. 24 (1996), no. 2, 508-539 crossref(new window)

8.
T. Gasser and H. Muller, Smoothing techniques for curve estimation, Proceedings of a Workshop held in Heidelberg, April 2-4, 1979. Edited by Th. Gasser and M. Rosenblatt. Lecture Notes in Mathematics, 757. Springer, Berlin, 1979

9.
A. A. Georgiev, Consistent nonparametric multiple regression: the fixed design case, J. Multivariate Anal. 25 (1988), no. 1, 100-110 crossref(new window)

10.
P. Hall and P. Patil, On wavelet methods for estimating smooth functions, Bernoulli 1 (1995), no. 1-2, 41-58 crossref(new window)

11.
K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295 crossref(new window)

12.
H.-Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett. 48 (2000), no. 4, 317-325 crossref(new window)

13.
H.-Y. Liang and J.-I. Baek, Weighted sums of negatively associated random variables, Aust. N. Z. J. Stat. 48 (2006), no. 1, 21-31 crossref(new window)

14.
H.-Y. Liang and B.-Y. Jing, Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences, J. Multivariate Anal. 95 (2005), no. 2, 227-245 crossref(new window)

15.
H.-Y. Liang, D. Zhang, and B. Lu, Wavelet estimation in nonparametric model under martingale difference errors, Appl. Math. J. Chinese Univ. Ser. B 19 (2004), no. 3, 302-310 crossref(new window)

16.
H. Liang, L. Zhu, and Y. Zhou, Asymptotically efficient estimation based on wavelet of expectation value in a partial linear model, Comm. Statist. Theory Methods 28 (1999), no. 9, 2045-2055 crossref(new window)

17.
D. S. Mitrinovic, Analytic inequalities, Springer-Verlag, New York-Berlin, 1970

18.
W. M. Qian and G. X. Cai, The strong convergencerate of wavelet estimator in partially models, Chinese Sci. A29 (1999), 233-240

19.
W. M. Qian, G. X. Chai, and F. Y. Jiang, The wavelet estimation of error variance for semiparametric regression models, Chinese Ann. Math. Ser. A 21 (2000), no. 3, 341-350

20.
G. G. Roussas, Consistent regression estimation with fixed design points under dependence conditions, Statist. Probab. Lett. 8 (1989), no. 1, 41-50 crossref(new window)

21.
G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal. 50 (1994), no. 1, 152-173 crossref(new window)

22.
G. G. Roussas, Asymptotic normality of the kernel estimate of a probability density function under association, Statist. Probab. Lett. 50 (2000), no. 1, 1-12 crossref(new window)

23.
G. G. Roussas, L. T. Tran, and D. A. Ioannides, Fixed design regression for time series: asymptotic normality, J. Multivariate Anal. 40 (1992), no. 2, 262-291 crossref(new window)

24.
Q.-M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), no. 2, 343-356 crossref(new window)

25.
Q.-M. Shao and C. Su, The law of the iterated logarithm for negatively associated random variables, Stochastic Process. Appl. 83 (1999), no. 1, 139-148 crossref(new window)

26.
Q. H. Wang, Some convergence properties of weighted kernel estimators of regression functions under random censorship, Acta Math. Appl. Sinica 19 (1996), no. 3, 338-350

27.
G. G. Walter, Wavelets and other orthogonal systems with applications, CRC Press, Boca Raton, FL, 1994

28.
L. G. Xue, Strong uniform convergence rates of wavelet estimates of regression function under complete and censored data, Acta Math. Appl. Sin. 25 (2002), no. 3, 430-438

29.
X. Zhou and J. You, Wavelet estimation in varying-coefficient partially linear regression models, Statist. Probab. Lett. 68 (2004), no. 1, 91-104 crossref(new window)