JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN UPPER BOUND OF THE BASIS NUMBER OF THE SEMI-STRONG PRODUCT OF CYCLES WITH BIPARTITE GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN UPPER BOUND OF THE BASIS NUMBER OF THE SEMI-STRONG PRODUCT OF CYCLES WITH BIPARTITE GRAPHS
Jaradat, Mohammed M.M.;
  PDF(new window)
 Abstract
An upper bound of the basis number of the semi-strong product of cycles with bipartite graphs is given. Also, an example is presented where the bound is achieved.
 Keywords
basis number;cycle space;fold;semi-strong product;
 Language
English
 Cited by
 References
1.
A. A. Ali, The basis number of complete multipartite graphs, Ars Combin. 28 (1989), 41-49

2.
A. A. Ali and G. T. Marougi, The basis number of the Cartesian product of some graphs, J. Indian Math. Soc. (N.S.) 58 (1992), no. 1-4, 123-134

3.
S. Y. Alsardary and J. Wojciechowski, The basis number of the powers of the complete graph, Discrete Math. 188 (1998), no. 1-3, 13-25 crossref(new window)

4.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, America Elsevier Publishing Co., Inc., New York, 1976

5.
W.-K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math. 20 (1971), 525-529

6.
W. Imrich and S. Klav.zar, Product Graphs, Structure and recognition. With a foreword by Peter Winkler. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000

7.
M. M. M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27 (2003), 293-306

8.
M. M. M. Jaradat, The basis number of the strong product of trees and cycles with some graphs, J. Combin. Math. Combin. Comput. 58 (2006), 195-209

9.
M. M. M. Jaradat, An upper bound of the basis number of the strong product of graphs, Discuss. Math. Graph Theory 25 (2005), no. 3, 391-406 crossref(new window)

10.
M. M. M. Jaradat, The basis number of the direct product of a theta graph and a path, Ars Combin. 75 (2005), 105-111

11.
M. M. M. Jaradat and M. Y. Alzoubi, An upper bound of the basis number of the lexicographic product of graphs, Australas. J. Combin. 32 (2005), 305-312

12.
M. M. M. Jaradat and M. Y. Alzoubi, On the basis number of the semi-strong product of bipartite graphs with cycles, Kyungpook Math. J. 45 (2005), no. 1, 45-53

13.
S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28 (1937), 22-32

14.
E. F. Schmeichel, The basis number of a graph, J. Combin. Theory Ser. B 30 (1981), no. 2, 123-129 crossref(new window)