JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ONE-PARAMETER GROUPS OF BOEHMIANS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ONE-PARAMETER GROUPS OF BOEHMIANS
Nemzer, Dennis;
  PDF(new window)
 Abstract
The space of periodic Boehmians with -convergence is a complete topological algebra which is not locally convex. A family of Boehmians such that is the identity and $T_{\lambda_1+\lambda_2}
 Keywords
infinitesimal generator;one-parameter group;periodic Boehmian;
 Language
English
 Cited by
1.
REAL COVERING OF THE GENERALIZED HANKEL-CLIFFORD TRANSFORM OF FOX KERNEL TYPE OF A CLASS OF BOEHMIANS,;;;

대한수학회보, 2015. vol.52. 5, pp.1607-1619 crossref(new window)
1.
On the Generalized Krätzel Transform and Its Extension to Bohemian Spaces, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
2.
On a Widder potential transform and its extension to a space of locally integrable Boehmians, Journal of the Association of Arab Universities for Basic and Applied Sciences, 2015, 18, 94  crossref(new windwow)
3.
REAL COVERING OF THE GENERALIZED HANKEL-CLIFFORD TRANSFORM OF FOX KERNEL TYPE OF A CLASS OF BOEHMIANS, Bulletin of the Korean Mathematical Society, 2015, 52, 5, 1607  crossref(new windwow)
4.
An extension of certain integral transform to a space of Boehmians, Journal of the Association of Arab Universities for Basic and Applied Sciences, 2015, 17, 36  crossref(new windwow)
5.
A class of Boehmians for a recent generalization of Hankel–Clifford transformation of arbitrary order, Afrika Matematika, 2016, 27, 5-6, 877  crossref(new windwow)
 References
1.
P. K. Banerji and D. Loonker, On the Mellin transform of tempered Boehmians, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 62 (2000), no. 4, 39-48

2.
J. J. Betancor, M. Linares, and J. M. R. Mendez, The Hankel transform of integrable Boehmians, Appl. Anal. 58 (1995), no. 3-4, 367-382 crossref(new window)

3.
J. J. Betancor, M. Linares, and J. M. R. Mendez, Ultraspherical transform of summable Boehmians, Math. Japon. 44 (1996), no. 1, 81-88

4.
J. Burzyk, P. Mikusinski, and D. Nemzer, Remarks on topological properties of Boehmi- ans, Rocky Mountain J. Math. 35 (2005), no. 3, 727-740 crossref(new window)

5.
N. V. Kalpakam and S. Ponnusamy, Convolution transform for Boehmians, Rocky Mountain J. Math. 33 (2003), no. 4, 1353-1378 crossref(new window)

6.
V. Karunakaran and N. V. Kalpakam, Boehmians representing measures, Houston J. Math. 26 (2000), no. 2, 377-386

7.
J. Mikusinski and T. K. Boehme, Operational calculus. Vol. II, International Series of Monographs in Pure and Applied Mathematics, 110. Pergamon Press, Oxford; PWN| Polish Scientific Publishers, Warsaw, 1987

8.
J. Mikusinski and P. Mikusinski, Quotients de suites et leurs applications dans l'analyse fonctionnelle, C. R. Acad. Sci. Paris Ser. I Math. 293 (1981), no. 9, 463-464

9.
P. Mikusinski, Convergence of Boehmians, Japan. J. Math. (N.S.) 9 (1983), no. 1, 159- 179

10.
P. Mikusinski, On harmonic Boehmians, Proc. Amer. Math. Soc. 106 (1989), no. 2, 447-449

11.
P. Mikusinski, Tempered Boehmians and ultradistributions, Proc. Amer. Math. Soc. 123 (1995), no. 3, 813-817

12.
P. Mikusinski and A. Zayed, The Radon transform of Boehmians, Proc. Amer. Math. Soc. 118 (1993), no. 2, 561-570

13.
D. Nemzer, Periodic Boehmians. II, Bull. Austral. Math. Soc. 44 (1991), no. 2, 271-278 crossref(new window)

14.
D. Nemzer, The dual space of ${\beta}({\Gammer})$, Internat. J. Math. Math. Sci. 20 (1997), no. 1, 111-114 crossref(new window)

15.
D. Nemzer, Generalized functions and an extended gap theorem, Indian J. Pure Appl. Math. 35 (2004), no. 1, 43-49

16.
D. Nemzer, Lacunary Boehmians, Integral Transforms Spec. Funct. 16 (2005), no. 5-6, 451-459

17.
W. Rudin, Functional analysis, Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991

18.
L. Schwartz, Theorie des distributions, Publications de l'Institut de Mathematique de l'Universite de Strasbourg, No. IX-X. Nouvelle edition, entierement corrigee, refondue et augmentee. Hermann, Paris, 1966