JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSITION VECTORS OF A SPACELIKE W-CURVE IN MINKOWSKI SPACE 𝔼13
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POSITION VECTORS OF A SPACELIKE W-CURVE IN MINKOWSKI SPACE 𝔼13
Ilarslan, Kazim; Boyacioglu, Ozgur;
  PDF(new window)
 Abstract
In this paper, we study the position vectors of a spacelike W-curve (or a helix), i.e., curve with constant curvatures, with spacelike, timelike and null principal normal in the Minkowski 3-space . We give some characterizations for spacelike W - curves whose image lies on the pseudohyperbolical space and Lorentzian sphere by using the positions vectors of the curve.
 Keywords
spacelike curve;W-curve;normal curve;position vector;Minkowski space;
 Language
English
 Cited by
1.
POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE,;;

호남수학학술지, 2014. vol.36. 2, pp.233-251 crossref(new window)
1.
Some characterizations of type-3 slant helices in Minkowski space-time, Involve, a Journal of Mathematics, 2009, 2, 1, 115  crossref(new windwow)
2.
Position vectors of slant helices in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 2012, 20, 1, 1  crossref(new windwow)
3.
Some associated curves of Frenet non-lightlike curves in E 1 3, Journal of Mathematical Analysis and Applications, 2012, 394, 2, 712  crossref(new windwow)
4.
POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE, Honam Mathematical Journal, 2014, 36, 2, 233  crossref(new windwow)
5.
Position vector of a time-like slant helix in Minkowski 3-space, Journal of Mathematical Analysis and Applications, 2010, 365, 2, 559  crossref(new windwow)
6.
Position vectors of spacelike general helices in Minkowski 3-space, Nonlinear Analysis: Theory, Methods & Applications, 2010, 73, 4, 1118  crossref(new windwow)
 References
1.
W. B. Bonnor, Null Curves in a Minkowski space-time, Tensor (N.S.) 20 (1969), 229- 242

2.
C. Camci, K. Ilarslan, and E. Sucurovic, On pseudohyperbolical curves in Minkowski space-time, Turkish J. Math. 27 (2003), no. 2, 315-328

3.
B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Mounthly 110 (2003), no. 2, 147-152 crossref(new window)

4.
N. Ekmekci and K. Ilarslan, Higher Curvatures of a Regular Curve in Lorentzian Space, J. Inst. Math. Comput. Sci. Math. Ser. 11 (1998), no. 2, 97-102

5.
K. Ilarslan, Spacelike Normal Curves in Minkowski Space $E_1^{3_1}$, Turkish J. Math. 29 (2005), no. 1, 53-63

6.
K. Ilarslan and E. Nesovic, Timelike and Null Normal Curves in Minkowski Space $E_1^{3_1}$, Indian J. Pure Appl. Math. 35 (2004), no. 7, 881-888

7.
K. Ilarslan, E. Nesovic, and M. Petrovic-Torgasev, Some Characterizations of Rectifying Curves in the Minkowski 3-space, Novi Sad J. Math. 33 (2003), no. 2, 23-32

8.
B. O`Neill, Semi-Riemannian geometry, With applications to relativity. Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983

9.
M. Petrovic-Torga.sev and E. Sucurovic, Some characterizations of Lorentzian spherical spacelike curves with the timelike and null principal normal, Mathematica Moravica 4 (2000), 83-92

10.
M. Petrovic-Torga.sev and E. Sucurovic, Some characterizations of the spacelike, the timelike and the null curves on the pseudohyperbolic space $H_0^{2_0}$ in $E_1{3_1}$, Kragujevac J. Math. 22 (2000), 71-82

11.
M. Petrovic-Torga.sev and E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math. 32 (2002), no. 2, 55-65

12.
J. L. Synge, Timelike helices in °at space-time, Proc. Roy. Irish Acad. Sect. A 65 (1967), 27-42

13.
J. Walrave, Curves and Surfaces in Minkowski Space, Ph. D. thesis, K. U. Leuven, Fac. of Science, Leuven, 1995

14.
Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365 crossref(new window)

15.
Y. C. Wong, On an explicit characterization of spherical curves, Proc. Amer. Math. Soc. 34 (1972), 239-242