JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE ZEROS OF CERTAIN FAMILY OF SELF-RECIPROCAL POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE ZEROS OF CERTAIN FAMILY OF SELF-RECIPROCAL POLYNOMIALS
Kim, Seon-Hong;
  PDF(new window)
 Abstract
For integral self-reciprocal polynomials P(z) and Q(z) with all zeros lying on the unit circle, does there exist integral self-reciprocal polynomial depending on r such that for any r, , all zeros of lie on the unit circle and
 Keywords
self-reciprocal polynomials;convex combination;zeros;unit circle;
 Language
English
 Cited by
1.
ON SELF-RECIPROCAL POLYNOMIALS AT A POINT ON THE UNIT CIRCLE,;

대한수학회보, 2009. vol.46. 6, pp.1153-1158 crossref(new window)
2.
ON THE ZEROS OF SELF-RECIPROCAL POLYNOMIALS SATISFYING CERTAIN COEFFICIENT CONDITIONS,;;

대한수학회보, 2010. vol.47. 6, pp.1189-1194 crossref(new window)
3.
ON SOME COMBINATIONS OF SELF-RECIPROCAL POLYNOMIALS,;

대한수학회논문집, 2012. vol.27. 1, pp.175-183 crossref(new window)
1.
ON SELF-RECIPROCAL POLYNOMIALS AT A POINT ON THE UNIT CIRCLE, Bulletin of the Korean Mathematical Society, 2009, 46, 6, 1153  crossref(new windwow)
2.
ON SOME COMBINATIONS OF SELF-RECIPROCAL POLYNOMIALS, Communications of the Korean Mathematical Society, 2012, 27, 1, 175  crossref(new windwow)
3.
ON THE ZEROS OF SELF-RECIPROCAL POLYNOMIALS SATISFYING CERTAIN COEFFICIENT CONDITIONS, Bulletin of the Korean Mathematical Society, 2010, 47, 6, 1189  crossref(new windwow)
 References
1.
A. Cohn, U ber die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14 (1922), no. 1, 110-148 crossref(new window)

2.
H. J. Fell, On the zeros of convex combinations of polynomials, Pacific J. Math. 89 (1980), no. 1, 43-50 crossref(new window)

3.
S.-H. Kim, Factorization of sums of polynomials, Acta Appl. Math. 73 (2002), no. 3, 275-284 crossref(new window)

4.
P. Lakatos, On zeros of reciprocal polynomials, Publ. Math. Debrecen 61 (2002), no. 3-4, 645-661

5.
M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer. Math. Society, Providence, R.I., 1966