1.
H.-O. Bae, Temporal decays in
$L^1$ and
$L^{\infty}$ for the Stokes flow, J. Differential Equations 222 (2006), no. 1, 1-20
2.
H.-O. Bae, Temporal and spatial decays for the Stokes flow, submitted
3.
H.-O. Bae, Analyticity and asymptotics for the Stokes solutions in a weighted space, J. Math. Anal. Appl. 269 (2002), no. 1, 149-171
4.
H.-O. Bae and H. J. Choe, Decay rate for the incompressible flow in half spaces, Math. Z. 238 (2001), no. 4, 799-816
5.
H.-O. Bae and B. J. Jin, Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations, J. Differential Equations 209 (2005), no. 2, 365-391
6.
H.-O. Bae and B. J. Jin, Temporal and spatial decays for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 3, 461-477
7.
W. Borchers and T. Miyakawa, Algebraic
$L^2$ decay for Navier-Stokes flow in exterior domains, Acta Math. 165 (1990), no. 3-4, 189-227
8.
W. Borchers and T. Miyakawa, Algebraic $L^2$ decay for Navier-Stokes flow in exterior domains. II, Hiroshima Math. J. 21 (1991), no. 3, 621-640
9.
L. Brandolese, Space-time decay of Navier-Stokes flow invariant under rotations, Math. Ann. 329 (2004), no. 4, 685-706
10.
L. Caffarelli, J. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771-831
11.
R. Farwig and H. Sohr, Global estimates in weighted spaces of weak solutions of the Navier-Stokes equations in exterior domains, Arch. Math. (Basel) 67 (1996), no. 4, 319-330
12.
R. Farwig and H. Sohr, Weighted energy inequalities for the Navier-Stokes equations in exterior domains, Appl. Anal. 58 (1995), no. 1-2, 157-173
13.
Y. Fujigaki and T. Miyakawa, Asymptotic pro?les of nonstationary incompressible Navier-Stokes flow in the whole space, SIAM J. Math. Anal. 33 (2001), no. 3, 523-544
14.
G. P. Galdi and P. Maremonti, Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains, Arch. Rational Mech. Anal. 94 (1986), no. 3, 253-266
15.
C. He, Weighted estimates for nonstationary Navier-Stokes equations, J. Differential Equations 148 (1998), no. 2, 422-444
16.
C. He and T. Miyakawa, On
$L^1$-summability and asymptotic profiles for smooth solutions to Navier-Stokes equations in a 3D exterior domain, Math. Z. 245 (2003), no. 2, 387-417
17.
C. He and Z. Xin, Weighted estimates for nonstationary Navier-Stokes equations in exterior domains, Methods Appl. Anal. 7 (2000), no. 3, 443-458
18.
C. He and Z. Xin, On the decay properties of solutions to the non-stationary Navier-Stokes equations in $R^3$, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 3, 597-619
19.
E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213-231
20.
H. Iwashita,
$L_q-L_p$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in
$L_q$ spaces, Math. Ann. 285 (1989), no. 2, 265-288
21.
H. Kozono, Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains, Math. Ann. 320 (2001), no. 4, 709-730
22.
H. Kozono, T. Ogawa, and H. Sohr, Asymptotic behaviour in
$L^r$ for weak solutions of the Navier-Stokes equations in exterior domains, Manuscripta Math. 74 (1992), no. 3, 253-275
23.
O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, Science Publishers, New York-London-Paris 1969
24.
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248
25.
T. Miyakawa, On space-time decay properties of nonstationary incompressible Navier- Stokes flow in $R^n$, Funkcial. Ekvac. 43 (2000), no. 3, 541-557
26.
T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior do- main, Hiroshima Math. J. 12 (1982), no. 1, 115-140
27.
T. Miyakawa and M. E. Schonbek, On optimal decay rates for weak solutions to the Navier-Stokes equations in $R^n$, Proceedings of Partial Differential Equations and Applications (olomouc, 1999), Math. Bohem. 126 (2001), no. 2, 443-455
28.
V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math. 66 (1976), no. 2, 535-552
29.
M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations 11 (1986), no. 7, 733-763
30.
G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech. 4 (2002), no. 1, 1-29
31.
S. Takahashi, A weighted equation approach to decay rate estimates for the Navier- Stokes equations, Nonlinear Anal. 37 (1999), no. 6, Ser. A: Theory Methods, 751-789
32.
M. Wiegner, Decay estimates for strong solutions of the Navier-Stokes equations in ex- terior domains, Navier-Stokes equations and related nonlinear problems (Ferrara, 1999). Ann. Univ. Ferrara Sez. VII (N.S.) 46 (2000), 61-79