JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME REMARKS ON COTORSION ENVELOPES OF MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME REMARKS ON COTORSION ENVELOPES OF MODULES
Kim, Hae-Sik; Song, Yeong-Moo;
  PDF(new window)
 Abstract
In this paper we prove that the extension of pure injective module is pure injective if and only if the cotorsion envelope and the pure injective envelope of any R-module M are isomorphic over M. And we prove that if the product of pure injective envelopes of flat modules is a pure injective envelope and the product of flat covers is a flat cover, then the product of cotorsion envelopes is a cotorsion envelope.
 Keywords
flat cover;pure injective envelope;cotorsion envelope;
 Language
English
 Cited by
 References
1.
L. Bican, R. El Bashir, and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33(2001), no. 4, 385-390 crossref(new window)

2.
E. Enochs, Torsion free covering modules. II, Arch. Math. (Basel) 22 (1971), 37-52 crossref(new window)

3.
E. Enochs, J. R. Garcia Rozas, and L. Oyonarte, Are covering (enveloping) morphisms minimal?, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2863-2868 crossref(new window)

4.
T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), no. 2, 298-325 crossref(new window)

5.
J. Xu, Flat covers of modules, Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996