JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE QUASI-HADAMARD PRODUCTS OF CERTAIN p-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE QUASI-HADAMARD PRODUCTS OF CERTAIN p-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS
Aouf, Mohamed Kamal;
  PDF(new window)
 Abstract
The object of the present paper is to show quasi-Hadamard products of certain p-valent functions with negative coefficients in the open unit disc. Our results are the generalizations of the corresponding results due to Yaguchi et al. [10], Aouf and Darwish [3], Lee et al. [5] and Sekine and Owa [9].
 Keywords
analytic;p-valent;quasi-Hadamard product;negative coefficients;
 Language
English
 Cited by
 References
1.
M. K. Aouf, Certain classes of p-valent functions with negative coefficients. II, Indian J. Pure Appl. Math. 19 (1988), no. 8, 761-767

2.
M. K. Aouf, A generalization of multivalent functions with negative coefficients. II, Bull. Korean Math. Soc. 25 (1988), no. 2, 221-232

3.
M. K. Aouf, A subclass of analytic p-valent functions with negative coefficients. I, Utilitas Math. 46 (1994), 219-231

4.
M. K. Aouf and H. E. Darwish, Basic properties and characterizations of a certain class of analytic functions with negative coefficients. II, Utilitas Math. 46 (1994), 167-177

5.
S. K. Lee, S. Owa, and H. M. Srivastava, Basic properties and characterizations of a certain class of analytic functions with negative coefficients, Utilitas Math. 36 (1989), 121-128

6.
S. Owa, On a class of analytic functions with fixed second coefficient. II, Bull. Soc. Roy. Sci. Liege 53 (1984), no. 3-4, 143-157

7.
S. Owa and M. K. Aouf, On radii of starlikeness and convexity for p-valent functions with negative coefficients, J. Fac. Sci. Tech. Kinki Univ. No. 30 (1994), 19-24

8.
S. M. Sarargi and B. A. Uralegaddi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients. I, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 65 (1978), no. 1-2, 38-42

9.
T. Sekine and S. Owa, Note on a class of functions whose derivative has a positive real part, Bull. Soc. Roy. Sci. Liege 54 (1985), no. 4-5, 203-210

10.
T. Yaguchi, O. Kwon, N. E. Cho, and R. Yamakawa, A generalization class of certain subclasses of p-valently analytic functions with negative coefficients, Surikaisekikenkyusho Kokyuroku No. 821 (1993), 101-111