JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON II-ARMENDARIZ RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON II-ARMENDARIZ RINGS
Huh, Chan; Lee, Chang-Ik; Park, Kwang-Sug; Ryu, Sung-Ju;
  PDF(new window)
 Abstract
We in this note introduce a concept, so called ring, that is a generalization of both Armendariz rings and 2-primal rings. We first observe the basic properties of rings, constructing typical examples. We next extend the class of rings, through various ring extensions.
 Keywords
ring;2-primal ring;Armendariz ring;nilpotent element;
 Language
English
 Cited by
1.
On Rings Having McCoy-Like Conditions, Communications in Algebra, 2012, 40, 4, 1195  crossref(new windwow)
2.
Nil-Armendariz rings relative to a monoid, Arabian Journal of Mathematics, 2013, 2, 1, 81  crossref(new windwow)
3.
ON Π-NEAR-ARMENDARIZ RINGS, Asian-European Journal of Mathematics, 2009, 02, 01, 77  crossref(new windwow)
4.
On nilpotent elements of ore extensions, Asian-European Journal of Mathematics, 2017, 10, 03, 1750043  crossref(new windwow)
5.
On linearly weak Armendariz rings, Journal of Pure and Applied Algebra, 2015, 219, 4, 1122  crossref(new windwow)
6.
On Skew Triangular Matrix Rings, Algebra Colloquium, 2015, 22, 02, 271  crossref(new windwow)
7.
π-Armendariz rings relative to a monoid, Frontiers of Mathematics in China, 2016, 11, 4, 1017  crossref(new windwow)
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272 crossref(new window)

2.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473 crossref(new window)

3.
G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and as- sociated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993

4.
G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213-230 crossref(new window)

5.
Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52 crossref(new window)

6.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761 crossref(new window)

7.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488 crossref(new window)

8.
T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593

9.
G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123 crossref(new window)

10.
G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520 crossref(new window)

11.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17 crossref(new window)

12.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 crossref(new window)