JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE COMMUTANT OF MULTIPLICATION OPERATORS WITH ANALYTIC POLYNOMIAL SYMBOLS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE COMMUTANT OF MULTIPLICATION OPERATORS WITH ANALYTIC POLYNOMIAL SYMBOLS
Robati, B. Khani;
  PDF(new window)
 Abstract
Let be a certain Banach space consisting of analytic functions defined on a bounded domain G in the complex plane. Let be an analytic polynomial or a rational function and let denote the operator of multiplication by . Under certain condition on and G, we characterize the commutant of that is the set of all bounded operators T such that $TM_{\varphi}
 Keywords
commutant;multiplication operators;Banach space of analytic functions;univalent function;bounded point evaluation;
 Language
English
 Cited by
 References
1.
S. Axler and Z. Cuckovic, Commuting Toeplitz operators with harmonic symbols, Inte-gral Equations Operator Theory 14 (1991), no. 1, 1-12 crossref(new window)

2.
S. Axler, Z. cuckovic, and N. V. Rao, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1951-1953 crossref(new window)

3.
Z. Cuckovic, Commutants of Toeplitz operators on the Bergman space, Pacific J. Math. 162 (1994), no. 2, 277-285 crossref(new window)

4.
Z. Cuckovic and D. S. Fan, Commutants of Toeplitz operators on the ball and annulus, Glasgow Math. J. 37 (1995), no. 3, 303-309 crossref(new window)

5.
B. K. Robati and S. M. Vaezpour, On the commutant of operators of multiplication by univalent functions, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2379-2383 crossref(new window)

6.
B. K. Robati and S. M. Vaezpour, On the commutant of multiplication operators with analytic symbols, Rocky Mountain J. Math. 33 (2003), no. 3, 1049-1056 crossref(new window)

7.
S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), no. 2, 585-616 crossref(new window)

8.
A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/1971), 777-788 crossref(new window)

9.
J. E. Thomson, The commutants of certain analytic Toeplitz operators, Proc. Amer. Math. Soc. 54 (1976), 165-169 crossref(new window)

10.
K. Zhu, Reducing subspaces for a class of multiplication operators, J. London Math. Soc. (2) 62 (2000), no. 2, 553-568 crossref(new window)

11.
K. Zhu, Irreducible multiplication operators on spaces of analytic functions, J. Operator Theory 51 (2004), no. 2, 377-385