JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON DECOMPOSITION OF COMPLETE EQUIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON DECOMPOSITION OF COMPLETE EQUIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES
Cho, Jung-Rae;
  PDF(new window)
 Abstract
In [8], it is shown that the complete multipartite graph having n partite sets of size 2t, where , has a decomposition into gregarious 6-cycles if or 4 (mod 6). Here, a cycle is called gregarious if it has at most one vertex from any particular partite set. In this paper, when or 3 (mod 6), another method using difference set is presented. Furthermore, when (mod 6), the decomposition obtained in this paper is , in the sense that it is invariant under the mapping which keeps the partite set which is indexed by fixed and permutes the remaining partite sets cyclically.
 Keywords
multipartite graph;graph decomposition;gregarious cycle;difference set;
 Language
English
 Cited by
1.
ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t) INTO GREGARIOUS m-CYCLES,;

East Asian mathematical journal, 2013. vol.29. 3, pp.337-347 crossref(new window)
2.
CIRCULANT DECOMPOSITIONS OF CERTAIN MULTIPARTITE GRAPHS INTO GREGARIOUS CYCLES OF A GIVEN LENGTH,;

East Asian mathematical journal, 2014. vol.30. 3, pp.311-319 crossref(new window)
1.
CIRCULANT DECOMPOSITIONS OF CERTAIN MULTIPARTITE GRAPHS INTO GREGARIOUS CYCLES OF A GIVEN LENGTH, East Asian mathematical journal, 2014, 30, 3, 311  crossref(new windwow)
2.
Some gregarious kite decompositions of complete equipartite graphs, Discrete Mathematics, 2013, 313, 5, 726  crossref(new windwow)
3.
ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t)INTO GREGARIOUS m-CYCLES, East Asian mathematical journal, 2013, 29, 3, 337  crossref(new windwow)
 References
1.
B. Alspach and H. Gavlas, Cycle decompositions of $K_n$ and $K_n$ - I, J. Combin. Theory Ser. B 81 (2001), no. 1, 77-99 crossref(new window)

2.
E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gre- garious 4-cycles, Discrete Math. 261 (2003), no. 1-3, 87-111 crossref(new window)

3.
E. Billington and D. G. Hoffman, Equipartite and almost-equipartite gregarious 4-cycle decompositions, preprint

4.
E. Billington, D. G. Hoffman, and C. A. Rodger, Resolvable gregarious cycle decompo- sitions of complete equipartite graphs, Preprint

5.
N. J. Cavenagh and E. J. Billington, Decomposition of complete multipartite graphs into cycles of even length, Graphs Combin. 16 (2000), no. 1, 49-65 crossref(new window)

6.
G. Chartrand and L. Lesniak, Graphs & digraphs: Fourth edition, Chapman & Hall/CRC, Boca Raton, FL, 2005

7.
J. R. Cho, M. J. Ferrara, R. J. Gould, and J. R. Schmitt, A difference set method for cir- cular decompositions of complete mutipartite graphs into gregarious 4-cycles, Submitted for publication

8.
J. R. Cho and R. J. Gould, Decompositions of complete multipartite graphs into gregar- ious 6-cycles using difference sets, To appear in J. Korean Math. Soc. crossref(new window)

9.
J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003), no. 1, 20-34 crossref(new window)

10.
J. Liu, A generalization of the Oberwolfach problem and $C_t$-factorizations of complete equipartite graphs, J. Combin. Des. 8 (2000), no. 1, 42-49 crossref(new window)

11.
M. Sajna, On decomposing $K_n$ - I into cycles of a fixed odd length, Discrete Math. 244 (2002), no. 1-3, 435-444 crossref(new window)

12.
M. Sajna, Cycle decompositions. III. Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), no. 1, 27-78 crossref(new window)

13.
D. Sotteau, Decomposition of $K_{m,n}(K^*_{m,n})$ into cycles (circuits) of length 2k, J. Combin. Theory Ser. B 30 (1981), no. 1, 75-81 crossref(new window)