JOURNAL BROWSE
Search
Advanced SearchSearch Tips
VIABILITY FOR SEMILINEAR DIFFERENTIAL EQUATIONS OF RETARDED TYPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
VIABILITY FOR SEMILINEAR DIFFERENTIAL EQUATIONS OF RETARDED TYPE
Dong, Qixiang; Li, Gang;
  PDF(new window)
 Abstract
Let X be a Banach space, the generator of a compact , D a locally closed subset in X, and a function of Caratheodory type. The main result of this paper is that a necessary and sufficient condition in order that D be a viable domain of the semi linear differential equation of retarded type $$u#(t)
 Keywords
viable domain;differential equation of retarded type;tangency condition;
 Language
English
 Cited by
1.
Viability for Semilinear Differential Equations with Infinite Delay, Mathematics, 2016, 4, 4, 64  crossref(new windwow)
 References
1.
M. Adimy, H. Bouzabir, and K. Ezzinbi, Existence for a class of partial functional diFFerential equations with infinite delay, Nonlinear Analysis 46 (2001), no. 1, 91-112 crossref(new window)

2.
O. Arino and E. Sanchez, Linear theory of abstract functional differential equations of retarded type, J. Math. Anal. Appl. 191 (1995), no. 3, 547-571 crossref(new window)

3.
H. Beliochi and J. M. Lasry, Integrandes normales et mesures parametrees en calcul des variations, Bull. Soc. Math. France 101 (1973), 129-184

4.
H. Brezis, On a charaterization of flow-invariant sets, Commun. Pure Appl. Math. 23 (1970), 261-263 crossref(new window)

5.
O. Carja and M. D. P. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Differential Equations 165 (2000), no. 2, 328-346 crossref(new window)

6.
O. Carja and I. I. Vrabie, Viable Domain for Differential Equations Governed by Caratheodory Perturbations of Nonlinear m-Accretive Operators, Lecture Notes in Pure and Appl. Math., Vol. 225, 109-130

7.
M. G. Crandall, A generalization of Peano's existence theorem and flow-invariance, Proc. Amer. Math. Soc. 36 (1972), 151-155 crossref(new window)

8.
J. K. Hale, Functional Differential Equations, Appl. Math. Sci. Vol. 3. Springer-Verlag New York, New York-Heidelberg, 1971. viii+238 pp

9.
P. Hartman, On invariant sets and on a theorem of Wazewski, Proc. Amer. Math. Soc. 32 (1972), no. 7, 511-520

10.
F. Iacob and N. H. Pavel, Invariant sets for a class of perturbed differential equations of retarded type, Isreal J. Math. 28 (1977), no. 3, 254-264 crossref(new window)

11.
A. G. Kartsatos and K. Y. Shin, Solvability of functional evolutions via compactness methads in general Banach spaces, Nonlinear Anal. 21 (1993), no. 7, 517-535 crossref(new window)

12.
A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), no. 3, 197-203 crossref(new window)

13.
J. Liang and T. J. Xiao, Solvability of the Cauchy problem for infinite delay equations, Nonlinear Anal. 58 (2004), no. 3-4, 271-297 crossref(new window)

14.
R. H. Martin. Jr., Differential equation on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414 crossref(new window)

15.
M. Nagumo, Uber die Lage Integralkurven gewonlicher Differential gleichungen, Proc. Phys. Math. Soc. Japan (3) 24 (1942), 551-559

16.
N. H. Pavel, Invariant sets for a class of semilinear equations of evolutiom, Nonlinear Anal. 1 (1977), 187-196 crossref(new window)

17.
N. H. Pavel, Differential equations, flow-invariance and applications, Research notes in mathematics 113, Pitman Publishing limited, 1984

18.
N. H. Pavel and D. Motreanu, Tangency, Flow-Invariance for Differential Equations, and Optimization Problems, Dekker New York/Basel, 1999

19.
A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equa- tions, Springer-Verlag, New York, 1983

20.
C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418 crossref(new window)

21.
C. C. Travis and G. F. Webb, Existence, stability and compactness in the ff-norm for partial functional dif- ferential equations, Trans. Amer. Math. Soc. 240 (1978), 129-143 crossref(new window)

22.
C. Ursescu, Caratheodory solution of ordinary differential equations on locally closed sets infinite dimensional spaces, Math. Japan 31 (1986), no. 3, 483-491

23.
G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12 crossref(new window)

24.
G. F. Webb, Asymptotic stability for abstract functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230 crossref(new window)