JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON AN EXTENSION FORMULAS FOR THE TRIPLE HYPERGEOMETRIC SERIES X8 DUE TO EXTON
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON AN EXTENSION FORMULAS FOR THE TRIPLE HYPERGEOMETRIC SERIES X8 DUE TO EXTON
Kim, Yong-Sup; Rathie, Arjun K.;
  PDF(new window)
 Abstract
The aim of this article is to derive twenty five transformation formulas in the form of a single result for the triple hypergeometric series introduced earlier by Exton. The results are derived with the help of generalized Watson#s theorem obtained earlier by Lavoie et al. An interesting special cases are also pointed out.
 Keywords
triple hypergeometric series ;laplace integral; function;generalized Watson's theorem;the identities of Pochhammer symbol;
 Language
English
 Cited by
1.
ON CERTAIN REDUCIBILITY OF KAMPE DE FERIET FUNCTION,;

호남수학학술지, 2009. vol.31. 2, pp.167-176 crossref(new window)
2.
APPLICATIONS OF GENERALIZED KUMMER'S SUMMATION THEOREM FOR THE SERIES 2F1,;;

대한수학회보, 2009. vol.46. 6, pp.1201-1211 crossref(new window)
3.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$,;;;

한국수학교육학회지시리즈B:순수및응용수학, 2010. vol.17. 4, pp.347-354
4.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5,;;;

호남수학학술지, 2010. vol.32. 3, pp.389-397 crossref(new window)
5.
AN EXTENSION OF THE TRIPLE HYPERGEOMETRIC SERIES BY EXTON,;;

호남수학학술지, 2010. vol.32. 1, pp.61-71 crossref(new window)
6.
GENERALIZED DOUBLE INTEGRAL INVOLVING KAMPÉ DE FÉRIET FUNCTION,;;;

호남수학학술지, 2011. vol.33. 1, pp.43-50 crossref(new window)
7.
DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS,;;;

충청수학회지, 2011. vol.24. 4, pp.745-758
8.
GENERALIZED SINGLE INTEGRAL INVOLVING KAMP$\acute{E}$ DE F$\acute{E}$RIET FUNCTION,;;;

충청수학회지, 2011. vol.24. 2, pp.205-212
9.
Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12 and X17,;;

Kyungpook mathematical journal, 2014. vol.54. 4, pp.677-684 crossref(new window)
1.
APPLICATIONS OF GENERALIZED KUMMER'S SUMMATION THEOREM FOR THE SERIES2F1, Bulletin of the Korean Mathematical Society, 2009, 46, 6, 1201  crossref(new windwow)
2.
GENERALIZED DOUBLE INTEGRAL INVOLVING KAMPÉ DE FÉRIET FUNCTION, Honam Mathematical Journal, 2011, 33, 1, 43  crossref(new windwow)
3.
AN EXTENSION OF THE TRIPLE HYPERGEOMETRIC SERIES BY EXTON, Honam Mathematical Journal, 2010, 32, 1, 61  crossref(new windwow)
4.
ON CERTAIN REDUCIBILITY OF KAMPE DE FERIET FUNCTION, Honam Mathematical Journal, 2009, 31, 2, 167  crossref(new windwow)
5.
Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12and X17, Kyungpook mathematical journal, 2014, 54, 4, 677  crossref(new windwow)
6.
Contiguous Extensions of Dixon's Theorem on the Sum of a 3F2, Journal of Inequalities and Applications, 2010, 2010, 1  crossref(new windwow)
7.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5, Honam Mathematical Journal, 2010, 32, 3, 389  crossref(new windwow)
8.
Relations between Lauricella’s triple hypergeometric function FA(3)(x,y,z) and Exton’s function X8, Advances in Difference Equations, 2013, 2013, 1, 34  crossref(new windwow)
9.
CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8, Communications of the Korean Mathematical Society, 2012, 27, 2, 257  crossref(new windwow)
 References
1.
W. N. Bailey, Generalized Hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York 1964

2.
H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), no. 2, 113-119

3.
Y. S. Kim, J. Choi, and A. K. Rathie, Remark on two results by Padmanabham for Exton's triple hypergeometric series $X_8$, Honam Math. J. 27 (2005), no. 4, 603-608

4.
Y. S. Kim, J. Choi, and A. K. Rathie, Another method for Padmanabham's transformation formula for Exton's triple hypergeometric series $X_8$, submitted, Indian J. appl. Math

5.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizatons of Watson's theorem on the sum of a $_3F_2$, Indian J. Math. 34 (1992), no. 2, 23-32

6.
E. D. Rainville, Special functions, The Macmillan company, New York, 1960

7.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, and London, 2001

8.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Harwood limited, Chichester, 1985

9.
H. M. Srivastava and H. L. Monacha, A Treatise on Generating Functions, Ellis Harwood limited, Chichester, 1984