JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HALF-FACTORIALITY OF D[S]
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HALF-FACTORIALITY OF D[S]
Shah, Tariq;
  PDF(new window)
 Abstract
In this note we discussed the half-factoriality of Krull monoid domain D[S] whenever the monoid S has trivial divisor class group.
 Keywords
monoid domain;HFD;class group;Krull monoid;Krull domain;
 Language
English
 Cited by
 References
1.
D. D. Anderson, D. F. Anderson, and M. Zafrullah, Rings between D[X] and K[X], Houston J. Math. 17 (1991), no. 1, 109-129

2.
D. F. Anderson and A. Ryckaert, The class group of D + M, J. Pure Appl. Algebra 52(1988), no. 3, 199-212 crossref(new window)

3.
L. G. Chouinard, II, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), no. 6, 1459-1468 crossref(new window)

4.
P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251-264 crossref(new window)

5.
J. Coykendall, A characterization of polynomial rings with the half-factorial property, Factorization in integral domains (Iowa City, IA, 1996), 291-294, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997

6.
R. M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74. Springer-Verlag, New York-Heidelberg, 1973

7.
R. Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1984

8.
R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86 crossref(new window)

9.
B. G. Kang, Divisibility properties of group rings over torsion-free abelian groups, Comment. Math. Univ. St. Paul. 48 (1999), no. 1, 19-24

10.
A. Zaks, Half factorial domains, Bull. Amer. Math. Soc. 82 (1976), no. 5, 721-723 crossref(new window)

11.
A. Zaks, Half-factorial-domains, Israel J. Math. 37 (1980), no. 4, 281-302 crossref(new window)