JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXTENSIONS OF EXTENDED SYMMETRIC RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXTENSIONS OF EXTENDED SYMMETRIC RINGS
Kwak, Tai-Keun;
  PDF(new window)
 Abstract
An endomorphism of a ring R is called right(left) symmetric if whenever abc=0 for a, b, c R, . A ring R is called right(left) if there exists a right(left) symmetric endomorphism of R. The notion of an ring is a generalization of rings as well as an extension of symmetric rings. We study characterizations of rings and their related properties including extensions. The relationship between rings and(extended) Armendariz rings is also investigated, consequently several known results relating to and symmetric rings can be obtained as corollaries of our results.
 Keywords
reduced rings;symmetric rings;(extended) Armendariz rings;
 Language
English
 Cited by
1.
On Extensions of Right Symmetric Rings without Identity, Advances in Pure Mathematics, 2014, 04, 12, 665  crossref(new windwow)
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272 crossref(new window)

2.
D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852 crossref(new window)

3.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473 crossref(new window)

4.
M. Baser, C. Y. Hong, and T. K. Kwak, On extended reversible rings, Algebra Colloq. (to appear)

5.
P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648 crossref(new window)

6.
J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76

7.
C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226 crossref(new window)

8.
C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122 crossref(new window)

9.
C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266 crossref(new window)

10.
C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167 crossref(new window)

11.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761 crossref(new window)

12.
J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300

13.
J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368 crossref(new window)

14.
G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318 crossref(new window)

15.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17 crossref(new window)

16.
G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 crossref(new window)