JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ISOMORPHISMS IN QUASI-BANACH ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ISOMORPHISMS IN QUASI-BANACH ALGEBRAS
Park, Choon-Kil; An, Jong-Su;
  PDF(new window)
 Abstract
Using the Hyers-Ulam-Rassias stability method, we investigate isomorphisms in quasi-Banach algebras and derivations on quasi-Banach algebras associated with the Cauchy-Jensen functional equation =f(x)+f(y)+2f(z), which was introduced and investigated in [2, 17]. The concept of Hyers-Ulam-Rassias stability originated from the Th. M. Rassias' stability theorem that appeared in the paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Furthermore, isometries and isometric isomorphisms in quasi-Banach algebras are studied.
 Keywords
Cauchy-Jensen functional equation;isomorphism;isometry;derivation;quasi-Banach algebra;
 Language
English
 Cited by
1.
PERTURBATIONS OF HIGHER TERNARY DERIVATIONS IN BANACH TERNARY ALGEBRAS,;;

대한수학회논문집, 2008. vol.23. 3, pp.387-399 crossref(new window)
2.
APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS,;;

대한수학회보, 2010. vol.47. 1, pp.195-209 crossref(new window)
3.
ON THE STABILITY OF BI-DERIVATIONS IN BANACH ALGEBRAS,;;

대한수학회보, 2011. vol.48. 5, pp.959-967 crossref(new window)
1.
CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM, Bulletin of the Korean Mathematical Society, 2010, 47, 1, 1  crossref(new windwow)
2.
APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS, Bulletin of the Korean Mathematical Society, 2010, 47, 1, 195  crossref(new windwow)
3.
Hybrid fixed point result for lipschitz homomorphisms on quasi-Banach algebras, Analysis in Theory and Applications, 2011, 27, 2, 109  crossref(new windwow)
4.
Stability of a Bi-Additive Functional Equation in Banach Modules Over aC⋆-Algebra, Discrete Dynamics in Nature and Society, 2012, 2012, 1  crossref(new windwow)
 References
1.
J. M. Almira and U. Luther, Inverse closedness of approximation algebras, J. Math. Anal. Appl. 314 (2006), no. 1, 30-44 crossref(new window)

2.
C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1789-1796 crossref(new window)

3.
C. Baak and M. S. Moslehian, On the stability of ${\theta}$-derivations on JB*-triples, Bull. Braz. Math. Soc. (N.S.) 38 (2007), no. 1, 115-127 crossref(new window)

4.
J. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658 crossref(new window)

5.
Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000

6.
J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (1986), no. 2, 221-226 crossref(new window)

7.
W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), no. 1-2, 149-161 crossref(new window)

8.
A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math. 62 (2001), no. 3, 303-309 crossref(new window)

9.
A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), no. 4, 707-710

10.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224 crossref(new window)

11.
N. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull. 38 (1995), no. 2, 218-222 crossref(new window)

12.
S. Mazur and S. Ulam, Sur les transformation d'espaces vectoriels norme, C. R. Acad. Sci. Paris 194 (1932), 946-948

13.
M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 3, 361-376 crossref(new window)

14.
C. Park, On an approximate automorphism on a C*-algebra, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1739-1745 crossref(new window)

15.
C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 79-97 crossref(new window)

16.
C. Park, A generalized Jensen's mapping and linear mappings between Banach modules, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 3, 333-362 crossref(new window)

17.
C. Park, Isomorphisms between C*-ternary algebras, J. Math. Phys. 47, no. 10, Article ID 103512 (2006), 12 pages

18.
C. Park, Y. Cho, and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, Article ID 41820 (2007), 13 pages crossref(new window)

19.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 crossref(new window)

20.
Th. M. Rassias, Problem 16; 2, Report of the 27th Internat. Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309

21.
Th. M. Rassias, Properties of isometic mappings, J. Math. Anal. Appl. 235 (1997), 108-121 crossref(new window)

22.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378 crossref(new window)

23.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284 crossref(new window)

24.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 crossref(new window)

25.
Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003

26.
Th. M. Rassias and P. Semrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), no. 3, 919-925 crossref(new window)

27.
J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), no. 1-2, 191-200 crossref(new window)

28.
S. Rolewicz, Metric Linear Spaces, Second edition. PWN-Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984

29.
S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964