JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ABOUT THE PERIOD OF BELL NUMBERS MODULO A PRIME
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ABOUT THE PERIOD OF BELL NUMBERS MODULO A PRIME
Car, Mireille; Gallardo, Luis H.; Rahavandrainy, Olivier; Vaserstein, Leonid N.;
  PDF(new window)
 Abstract
Let p be a prime number. It is known that the order o(r) of a root r of the irreducible polynomial over divides . Samuel Wagstaff recently conjectured that o(r) = g(p) for any prime p. The main object of the paper is to give some subsets S of {1,...,g(p)} that do not contain o(r).
 Keywords
Bell numbers modulo a prime;extension of prime degree p of ;
 Language
English
 Cited by
1.
Some primitive elements for the Artin–Schreier extensions of finite fields, Journal of Mathematical Sciences, 2015, 210, 1, 67  crossref(new windwow)
 References
1.
N. Bourbaki, Elements de mathematique. Algebre. Chapitres 4 a 7, Lecture Notes in Mathematics, 864. Masson, Paris, 1981

2.
S. D. Cohen, Reducibility of sublinear polynomials over a finite field, Bull. Korean Math. Soc. 22 (1985), no. 1, 53-56

3.
R. Lidl and H. Niederreiter, Finite Fields, With a foreword by P. M. Cohn. Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997

4.
W. F. Lunnon, P. A. B. Pleasants, N. M. Stephens, Arithmetic properties of Bell numbers to a composite modulus. I, Acta Arith. 35 (1979), no. 1, 1-16

5.
W. H. Mills, The degrees of the factors of certain polynomials over finite fields, Proc. Amer. Math. Soc. 25 (1970), 860-863

6.
S. Jr. Wagstaff, Aurifeuillian factorizations and the period of the Bell numbers modulo a prime, Math. Comp. 65 (1996), no. 213, 383-391 crossref(new window)