JOURNAL BROWSE
Search
Advanced SearchSearch Tips
APPROXIMATELY C*-INNER PRODUCT PRESERVING MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
APPROXIMATELY C*-INNER PRODUCT PRESERVING MAPPINGS
Chmielinski, Jacek; Moslehian, Mohammad Sal;
  PDF(new window)
 Abstract
A mapping f : between Hilbert -modules approximately preserves the inner product if <><> for an appropriate control function and all x, y M. In this paper, we extend some results concerning the stability of the orthogonality equation to the framework of Hilbert -modules on more general restricted domains. In particular, we investigate some asymptotic behavior and the Hyers-Ulam-Rassias stability of the orthogonality equation.
 Keywords
Hilbert -module;Hyers-Ulam-Rassias stability;superstability;orthogonality equation;asymptotic behavior;
 Language
English
 Cited by
1.
Orthogonalities and functional equations, Aequationes mathematicae, 2015, 89, 2, 215  crossref(new windwow)
2.
Perturbation of the Wigner equation in inner product C*-modules, Journal of Mathematical Physics, 2008, 49, 3, 033519  crossref(new windwow)
 References
1.
M. Amyari, Stability of C*-inner products, J. Math. Anal. Appl. 322 (2006), 214-218 crossref(new window)

2.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66 crossref(new window)

3.
C. Baak, H. Chu, and M. S. Moslehian, On the Cauchy-Rassias inequality and linear n-inner product preserving mappings, Math. Inequal. Appl. 9 (2006), no. 3, 453-464

4.
R. Badora and J. Chmieli'nski, Decomposition of mappings approximately inner product preserving, Nonlinear Anal. 62 (2005), no. 6, 1015-1023 crossref(new window)

5.
J. Chmielinski, On a singular case in the Hyers-Ulam-Rassias stability of the Wigner equation, J. Math. Anal. Appl. 289 (2004), no. 2, 571-583 crossref(new window)

6.
J. Chmielinski and S.-M. Jung, The stability of the Wigner equation on a restricted domain, J. Math. Anal. Appl. 254 (2001), no. 1, 309-320 crossref(new window)

7.
S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002

8.
G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190 crossref(new window)

9.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224

10.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998

11.
D. H. Hyers, G. Isac, and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 425-430

12.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 crossref(new window)

13.
G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of $\psi$-additive mappings, J. Approx. Theory 72 (1993), no. 2, 131-137 crossref(new window)

14.
S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001

15.
I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858 crossref(new window)

16.
E. C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995

17.
V. M. Manuilov and E. V. Troitsky, Hilbert C*-modules, Translations of Mathematical Monographs, 226. American Mathematical Society, Providence, RI, 2005

18.
M. S. Moslehian, Asymptotic behavior of the extended Jensen equation, Studia Sci. Math. Hungar (to appear)

19.
J. G. Murphy, C*-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990

20.
W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468 crossref(new window)

21.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300

22.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 crossref(new window)

23.
Th. M. Rassias, Stability of the Generalized Orthogonality Functional Equation, Inner product spaces and applications, 219-240, Pitman Res. Notes Math. Ser., 376, Longman, Harlow, 1997

24.
Th. M. Rassias, A new generalization of a theorem of Jung for the orthogonality equation, Appl. Anal. 81 (2002), no. 1, 163-177 crossref(new window)

25.
M. A. Rieffel, Induced representations of C*-algebras, Advances in Math. 13 (1974), 176-257 crossref(new window)

26.
S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964