JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BINDING NUMBER CONDITIONS FOR (a, b, k)-CRITICAL GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BINDING NUMBER CONDITIONS FOR (a, b, k)-CRITICAL GRAPHS
Zhou, Sizhong;
  PDF(new window)
 Abstract
Let G be a graph, and let a, b, k be integers with . Then graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. In this paper, the relationship between binding number bind(G) and (a, b, k)-critical graph is discussed, and a binding number condition for a graph to be (a, b, k)-critical is given.
 Keywords
graph;[a, b]-factor;binding number;(a, b, k)-critical graph;
 Language
English
 Cited by
1.
A sufficient condition for a graph to be an (a, b, k)-critical graph, International Journal of Computer Mathematics, 2010, 87, 10, 2202  crossref(new windwow)
 References
1.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976

2.
M. Cai, O. Favaron, and H. Li, (2,k)-factor-critical graphs and toughness, Graphs Combin. 15 (1999), no. 2, 137-142 crossref(new window)

3.
H. Enomoto and M. Hagita, Toughness and the existence of k-factors. IV, Discrete Math. 216 (2000), no. 1-3, 111-120 crossref(new window)

4.
G. Liu and J. Wang, (a,b,k)-critical graphs, Adv. Math. (China) 27 (1998), no. 6, 536-540

5.
M. Shi, X. Yuan, M. Cai, and O. Favaron, (3,k)-factor-critical graphs and toughness, Graphs Combin. 15 (1999), no. 4, 463-471 crossref(new window)

6.
D. R. Woodall, The binding number of a graph and its Anderson number, J. Combinatorial Theory Ser. B 15 (1973), 225-255 crossref(new window)

7.
Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993), 55-64

8.
S. Z. Zhou, Sufficient conditions for (a,b,k)-critical graphs, J. Jilin Univ. Sci. 43 (2005), no. 5, 607-609