JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FIXED POINTS AND HOMOTOPY RESULTS FOR ĆIRIĆ-TYPE MULTIVALUED OPERATORS ON A SET WITH TWO METRICS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FIXED POINTS AND HOMOTOPY RESULTS FOR ĆIRIĆ-TYPE MULTIVALUED OPERATORS ON A SET WITH TWO METRICS
Lazar, Tania; O`Regan, Donal; Petrusel, Adrian;
  PDF(new window)
 Abstract
The purpose of this paper is to present some fixed point results for nonself multivalued operators on a set with two metrics. In addition, a homotopy result for multivalued operators on a set with two metrics is given. The data dependence and the well-posedness of the fixed point problem are also discussed.
 Keywords
set with two metrics;multivalued operator;fixed point;well-posed fixed point problem;generalized contraction;data dependence;
 Language
English
 Cited by
1.
Fixed point theory for multivalued φ-contractions, Fixed Point Theory and Applications, 2011, 2011, 1, 50  crossref(new windwow)
2.
Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 3-4, 2009  crossref(new windwow)
 References
1.
R. P. Agarwal and D. O'Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl. 248 (2000), no. 2, 402-414 crossref(new window)

2.
R. P. Agarwal, J. H. Dshalalow, and D. O'Regan, Fixed point and homotopy results for generalized contractive maps of Reich type, Appl. Anal. 82 (2003), no. 4, 329-350 crossref(new window)

3.
L. B. Ciric, Fixed points for generalized multi-valued contractions, Mat. Vesnik 9(24) (1972), 265-272

4.
H. Covitz and S. B. Jr. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11 crossref(new window)

5.
M. Frigon and A. Granas, Resultats du type de Leray-Schauder pour des contractions multivoques, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 197-208

6.
A. Petrusel, Generalized multivalued contractions, Nonlinear Anal. 47 (2001), no. 1, 649-659 crossref(new window)

7.
A. Petrusel and I. A. Rus, Well-posedness of the fixed point problem for multivalued operators, Applied analysis and differential equations, 295-306, World Sci. Publ., Hackensack, NJ, 2007

8.
A. Petrusel and I. A. Rus, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory 8 (2007), no. 1, 97-104

9.
A. Petrusel, I. A. Rus, and J.-C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math. 11 (2007), no. 3, 903-914

10.
S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26-42

11.
I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001

12.
I. A. Rus, A. Petrusel, and G. Petrusel, Fixed Point Theory: 1950-2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002

13.
I. A. Rus, A. Petrusel, and A. Sintamarian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (2003), no. 8, 1947-1959 crossref(new window)