JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MENDELSOHN TRIPLE SYSTEMS EXCLUDING CONTIGUOUS UNITS WITH λ
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MENDELSOHN TRIPLE SYSTEMS EXCLUDING CONTIGUOUS UNITS WITH λ
Cho, Chung-Je;
  PDF(new window)
 Abstract
We obtain a necessary and sufficient condition for the existence of Mendelsohn triple systems excluding contiguous units with
 Keywords
triple system sampling plan excluding contiguous units;directed(Mendelsohn) triple system;automorphism;(partial) triple system;Latin square;group divisible design;
 Language
English
 Cited by
1.
Evaluation and treatment of the patient with acute dizziness in primary care, Journal of the Korean Medical Association, 2010, 53, 10, 898  crossref(new windwow)
 References
1.
I. Anderson, Combinatorial Designs : Construction Methods, Ellis Horwood, New York, Halsted Press, 1990

2.
F. E. Bennett, Direct constructions for perfect 3-cyclic designs, Algebraic and geometric combinatorics, 63-68, North-Holland Math. Stud., 65, North-Holland, Amsterdam, 1982

3.
C. J. Colbourn, Automorphisms of directed triple systems, Bull. Austral. Math. Soc. 43 (1991), no. 2, 257-264 crossref(new window)

4.
C. J. Colbourn and M. J. Colbourn, Every twofold triple system can be directed, J. Combin. Theory Ser. A 34 (1983), no. 3, 375-378 crossref(new window)

5.
C. J. Colbourn and J. J. Harms, Directing triple systems, Ars Combin. 15 (1983), 261-266

6.
C. J. Colbourn and A. C. H. Ling, A class of partial triple systems with applications in survey sampling, Comm. Statist. Theory Methods 27 (1998), no. 4, 1009-1018 crossref(new window)

7.
C. J. Colbourn and A. Rosa, Quadratic leaves of maximal partial triple systems, Graphs Combin. 2 (1986), no. 4, 317-337 crossref(new window)

8.
H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386 crossref(new window)

9.
J. J. Harms and C. J. Colbourn, An optimal algorithm for directing triple systems using Eulerian circuits, Cycles in graphs (Burnaby, B.C., 1982), 433-438, North-Holland Math. Stud., 115, North-Holland, Amsterdam, 1985

10.
S. H. Y. Hung and N. S. Mendelsohn, Directed triple systems, J. Combinatorial Theory Ser. A 14 (1973), 310-318 crossref(new window)

11.
N. S. Mendelsohn, A natural generalization of Steiner triple systems, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pp. 323-338. Academic Press, London, 1971

12.
J. Seberry and D. Skillicorn, All directed BIBDs with k = 3 exist, J. Combin. Theory Ser. A 29 (1980), no. 2, 244-248 crossref(new window)

13.
D. T. Todorov, Three mutually orthogonal Latin squares of order 14, Ars Combin. 20 (1985), 45-47

14.
W. D. Wallis, Three orthogonal Latin squares, Adv. in Math. (Beijing) 15 (1986), no. 3, 269-281 crossref(new window)

15.
R. Wei, Cyclic BSEC of block size 3, Discrete Math. 250 (2002), no. 1-3, 291-298 crossref(new window)