JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SASAKIAN MANIFOLDS WITH QUASI-CONFORMAL CURVATURE TENSOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SASAKIAN MANIFOLDS WITH QUASI-CONFORMAL CURVATURE TENSOR
De, Uday Chand; Jun, Jae-Bok; Gazi, Abul Kalam;
  PDF(new window)
 Abstract
The object of the paper is to study a Sasakian manifold with quasi-conformal curvature tensor.
 Keywords
quasi-conformal curvature tensor-Einstein manifold;
 Language
English
 Cited by
1.
ON ALMOST C(α)-MANIFOLDS SATISFYING CERTAIN CONDITIONS ON QUASI-CONFORMAL CURVATURE TENSOR,;;

Proceedings of the Jangjeon Mathematical Society, 2016. vol.19. 1, pp.115-124
 References
1.
K. Amur and Y. B. Maralabhavi, On quasi-conformally flat spaces, Tensor (N.S.) 31 (1977), no. 2, 194-198

2.
D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin-New York, 1976

3.
M. C. Chaki and M. Tarafdar, On a type of Sasakian manifold, Soochow J. Math. 16 (1990), no. 1, 23-28

4.
L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949

5.
M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J. (2) 14 (1962), 135-145 crossref(new window)

6.
S. Sasaki, Lecture Note on Almost Contact Manifolds, Part I, Tohoku University, 1965

7.
S. Sasaki, Lecture Note on Almost Contact Manifolds, Part II, Tohoku University, 1967

8.
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y)R = 0. I. The local version, J. Differential Geom. 17 (1982), no. 4, 531-582

9.
K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1 Marcel Dekker, Inc., New York, 1970

10.
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984

11.
K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968), 161-184