JOURNAL BROWSE
Search
Advanced SearchSearch Tips
IMAGINARY BICYCLIC FUNCTION FIELDS WITH THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
IMAGINARY BICYCLIC FUNCTION FIELDS WITH THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE
Jung, Hwan-Yup;
  PDF(new window)
 Abstract
Let $k
 Keywords
imaginary bicyclic function field;real cyclic function field;class number one;
 Language
English
 Cited by
1.
ON HILBERT 2-CLASS FIELD TOWERS OF REAL QUADRATIC FUNCTION FIELDS,;

충청수학회지, 2010. vol.23. 3, pp.547-553
2.
HILBERT 2-CLASS FIELD TOWERS OF REAL QUADRATIC FUNCTION FIELDS,;

대한수학회논문집, 2014. vol.29. 2, pp.219-226 crossref(new window)
1.
HILBERT 2-CLASS FIELD TOWERS OF REAL QUADRATIC FUNCTION FIELDS, Communications of the Korean Mathematical Society, 2014, 29, 2, 219  crossref(new windwow)
 References
1.
J. Ahn, S. Bae, and H. Jung, Cyclotomic units and Stickelberger ideals of global function fields, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1803-1818 crossref(new window)

2.
S. Bae and J. Koo, Genus theory for function fields, J. Austral. Math. Soc. Ser. A 60 (1996), no. 3, 301-310 crossref(new window)

3.
V. Fleckinger and C. Thiebaud, Ideaux ambiges dans les corps de fonctions, J. Number Theory 100 (2003), no. 2, 217-228 crossref(new window)

4.
P.-L. Kang and D.-S. Lee, Genus numbers and ambiguous class numbers of function fields, Commun. Korean Math. Soc. 12 (1997), no. 1, 37-43

5.
M. Rosen, Ambiguous divisor classes in function fields, J. Number Theory 9 (1977), no. 2, 160-174 crossref(new window)

6.
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993

7.
C. Wittmann, l-class groups of cyclic function fields of degree l, Finite Fields Appl. 13 (2007), no. 2, 327-347 crossref(new window)

8.
H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J. 29 (1967), 31-44

9.
H. Yokoi, Imaginary bicyclic biquadratic fields with the real quadratic subfield of class-number one, Nagoya Math. J. 102 (1986), 91-100

10.
J. Zhao, Class number relation between type (l,l,...,l) function fields over $F_q(T)$ and their subfields, Sci. China Ser. A 38 (1995), no. 6, 674-682