JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE MINIMUM LENGTH OF SOME LINEAR CODES OF DIMENSION 6
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE MINIMUM LENGTH OF SOME LINEAR CODES OF DIMENSION 6
Cheon, Eun-Ju; Kato, Takao;
  PDF(new window)
 Abstract
For , we prove the non-existence of a code and we give a code by constructing appropriate 0-cycle in the projective space, where $g_q (k,d)
 Keywords
Griesmer bound;linear code;0-cycle;minimum length;projective space;
 Language
English
 Cited by
1.
SOFT WS-ALGEBRAS,;;;

대한수학회논문집, 2008. vol.23. 3, pp.313-324 crossref(new window)
2.
DETERMINATION OF MINIMUM LENGTH OF SOME LINEAR CODES,;

충청수학회지, 2013. vol.26. 1, pp.147-159 crossref(new window)
1.
DETERMINATION OF MINIMUM LENGTH OF SOME LINEAR CODES, Journal of the Chungcheong Mathematical Society, 2013, 26, 1, 147  crossref(new windwow)
 References
1.
N. Hamada, A characterization of some n, k, d; q-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993), no. 1-3, 229-268 crossref(new window)

2.
N. Hamada and T. Helleseth, The nonexistence of some ternary linear codes and update of the bounds for n3(6, d), 1 $\leq$ d $\leq$ 243, Math. Japon. 52 (2000), no. 1, 31-43

3.
R. Hill, Optimal linear codes, Cryptography and coding, II (Cirencester, 1989), 75-104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992

4.
T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001), no. 2, 165-177 crossref(new window)

5.
T. Maruta, Griesmer bound for linear codes over finite fields, Available: http://www. geocities.com/mars39.geo/griesmer.htm