JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON ω-CHEBYSHEV SUBSPACES IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON ω-CHEBYSHEV SUBSPACES IN BANACH SPACES
Shams, Maram; Mazaheri, Hamid; Vaezpour, Sayed Mansour;
  PDF(new window)
 Abstract
The purpose of this paper is to introduce and discuss the concept of -Chebyshev subspaces in Banach spaces. The concept of quasi Chebyshev in Banach space is defined. We show that -Chebyshevity of subspaces are a new class in approximation theory. In this paper, also we consider orthogonality in normed spaces.
 Keywords
-Chebyshev subspaces;orthogonality;proximinal subspaces;Chebyshev subspaces;
 Language
English
 Cited by
1.
On simultaneous weakly-Chebyshev subspaces, Analysis in Theory and Applications, 2011, 27, 2, 117  crossref(new windwow)
 References
1.
D. Narayana and T. S. S. R. K. Rao, Some remarks on quasi-Chebyshev subspaces, J. Math. Anal. Appl. 321 (2006), no. 1, 193-197 crossref(new window)

2.
C. Franchetti and M. Furi, Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures. Appl. 17 (1972), 1045-1048

3.
H. Mazaheri and F. M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, Nonlinear Anal. 65 (2006), no. 3, 534-537 crossref(new window)

4.
H. Mazaheri and S. M. Vaezpour, Orthogonality and $\epsilon$-orthogonality in Banach spaces, Aust. J. Math. ASnal. Appl. 2 (2005) no. 1, Art. 10, 1-5

5.
P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, Monatsh. Math. 88 (1979), no. 1, 27-44 crossref(new window)

6.
I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970