JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ORBITAL SHADOWING PROPERTY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ORBITAL SHADOWING PROPERTY
Honary, Bahman; Bahabadi, Alireza Zamani;
  PDF(new window)
 Abstract
Let M be a generalized homogeneous compact space, and let Z(M) denotes the space of homeomorphisms of M with the topology. In this paper, we show that if the interior of the set of weak stable homeomorphisms on M is not empty then for any open subset W of Z(M) containing only weak stable homeomorphisms the orbital shadowing property is generic in W.
 Keywords
orbital shadowing property;-pseudo-orbit;shadowing property;
 Language
English
 Cited by
1.
Weak Strictly Persistence Homeomorphisms and Weak Inverse Shadowing Property and Genericity,;;

Kyungpook mathematical journal, 2009. vol.49. 3, pp.411-418 crossref(new window)
1.
Weak Strictly Persistence Homeomorphisms and Weak Inverse Shadowing Property and Genericity, Kyungpook mathematical journal, 2009, 49, 3, 411  crossref(new windwow)
 References
1.
T. Choi, S. Kim, and K. Lee, Weak inverse shadowing and genericity, Bull. Korean Math. Soc. 43 (2006), no. 1, 43-52 crossref(new window)

2.
B. A. Coomes, H. Ko¸cak, and K. J. Palmer, Periodic shadowing, Chaotic numerics (Geelong, 1993), 115-130, Contemp. Math., 172, Amer. Math. Soc., Providence, RI, 1994

3.
R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423 crossref(new window)

4.
P. E. Kloeden and J. Ombach, Hyperbolic homeomorphisms and bishadowing, Ann. Polon. Math. 65 (1997), no. 2, 171-177 crossref(new window)

5.
P. Koscielniak and M. Mazur, Chaos and the shadowing property, Topology Appl. 154 (2007), no. 13, 2553-2557 crossref(new window)

6.
K. Kuratowski, Topology. Vol. II., Academic Press, New York-London; Panstwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warszawa, 1968

7.
M. Mazur, Weak shadowing for discrete dynamical systems on nonsmooth manifolds, J. Math. Anal. Appl. 281 (2003), no. 2, 657-662 crossref(new window)

8.
M. Mazur, Tolerance stability conjecture revisited, Topology Appl. 131 (2003), no. 1, 33-38 crossref(new window)

9.
S. Yu. Pilyugin and O. B. Plamenevskaya, Shadowing is generic, Topology Appl. 97 (1999), no. 3, 253-266 crossref(new window)

10.
F. Takens, On Zeeman's tolerance stability conjecture, Lecture Notes in Mathematics 197, Spriger-Verlag, pp. 209-219, 1971

11.
P.Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., 668, Springer, Berlin, pp. 231-244, 1978