JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE SEMIGROUPS OF BINARY SYSTEMS AND SOME PERSPECTIVES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE SEMIGROUPS OF BINARY SYSTEMS AND SOME PERSPECTIVES
Kim, Hee-Sik; Neggers, Joseph;
  PDF(new window)
 Abstract
Given binary operations "*" and "" on a set X, define a product binary operation "" as follows: . This in turn yields a binary operation on Bin(X), the set of groupoids defined on X turning it into a semigroup (Bin(X), )with identity (x * y = x) the left zero semigroup and an analog of negative one in the right zero semigroup (x * y = y). The composition is a generalization of the composition of functions, modelled here as leftoids (x * y = f(x)), permitting one to study the dynamics of binary systems as well as a variety of other perspectives also of interest.
 Keywords
leftoid;semigroup;binary system;orientation (property);(travel, linear) groupoid;orbit;strong;d-algebra;separable;
 Language
English
 Cited by
1.
LOCALLY-ZERO GROUPOIDS AND THE CENTER OF BIN(X),;

대한수학회논문집, 2011. vol.26. 2, pp.163-168 crossref(new window)
1.
(n−1)-Step Derivations onn-Groupoids: The Casen=3, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
2.
LOCALLY-ZERO GROUPOIDS AND THE CENTER OF BIN(X), Communications of the Korean Mathematical Society, 2011, 26, 2, 163  crossref(new windwow)
3.
The Hypergroupoid Semigroups as Generalizations of the Groupoid Semigroups, Journal of Applied Mathematics, 2012, 2012, 1  crossref(new windwow)
4.
On Abelian and Related Fuzzy Subsets of Groupoids, The Scientific World Journal, 2013, 2013, 1  crossref(new windwow)
5.
Several types of groupoids induced by two-variable functions, SpringerPlus, 2016, 5, 1  crossref(new windwow)
6.
The Interaction between Fuzzy Subsets and Groupoids, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
7.
TN-groupoids, Mathematica Slovaca, 2013, 63, 4  crossref(new windwow)
8.
Fuzzy rank functions in the set of all binary systems, SpringerPlus, 2016, 5, 1  crossref(new windwow)
9.
Hyperfuzzy subsets and subgroupoids, Journal of Intelligent & Fuzzy Systems, 2017, 33, 3, 1553  crossref(new windwow)
10.
Fuzzy Upper Bounds in Groupoids, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
 References
1.
R. L. O. Cignoli, I. M. L. D'ottaviano, and D. Mundici, Algebraic Ffoundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000

2.
A. Dvurecenskij and S. Pulmannova, New Trends in Quantum Structures, Mathematics and its Applications, 516. Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000

3.
J. S. Han, H. S. Kim, and J. Neggers, Strong and ordinary d-algebras, J. Multi-Valued Logic and Soft Computing (to appear)

4.
Y. Huang, BCI-algebra, Science Press, Beijing, 2006

5.
J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994

6.
L. Nebesky, An algebraic characterization of geodetic graphs, Czechoslovak Math. J. 48(123) (1998), no. 4, 701-710 crossref(new window)

7.
L. Nebesky, A tree as a finite nonempty set with a binary operation, Math. Bohem. 125 (2000), no. 4, 455-458

8.
L. Nebesky, Travel groupoids, Czechoslovak Math. J. 56(131) (2006), no. 2, 659-675. crossref(new window)

9.
J. Neggers, A. Dvurecenskij, and H. S. Kim, On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), no. 10, 1807-1816 crossref(new window)

10.
J. Neggers, Y. B. Jun, and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), no. 3, 243-251

11.
J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), no. 1, 19-26