JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE NUMERICAL SOLUTION OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS USING MULTIQUADRIC APPROXIMATION SCHEME
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE NUMERICAL SOLUTION OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS USING MULTIQUADRIC APPROXIMATION SCHEME
Vanani, Solat Karimi; Aminataei, Azim;
  PDF(new window)
 Abstract
In this paper, the aim is to solve the neutral delay differential equations in the following form using multiquadric approximation scheme, (1) where f : is a smooth function, and are continuous functions on such that t- < and t - < . Also represents the initial function or the initial data. Hence, we present the advantage of using the multiquadric approximation scheme. In the sequel, presented numerical solutions of some experiments, illustrate the high accuracy and the efficiency of the proposed method even where the data points are scattered.
 Keywords
multiquadric approximation scheme;delay differential equations;neutral delay differential equations;
 Language
English
 Cited by
1.
Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method, Engineering Analysis with Boundary Elements, 2014, 38, 72  crossref(new windwow)
2.
Numerical Solution of a Neutral Differential Equation with Infinite Delay, Differential Equations and Dynamical Systems, 2012, 20, 1, 17  crossref(new windwow)
3.
The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Engineering Analysis with Boundary Elements, 2013, 37, 2, 475  crossref(new windwow)
4.
The numerical solution of the two–dimensional sinh-Gordon equation via three meshless methods, Engineering Analysis with Boundary Elements, 2015, 51, 220  crossref(new windwow)
5.
Laguerre matrix method with the residual error estimation for solutions of a class of delay differential equations, Mathematical Methods in the Applied Sciences, 2014, 37, 4, 453  crossref(new windwow)
6.
An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations, Engineering Analysis with Boundary Elements, 2015, 50, 412  crossref(new windwow)
7.
Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives, Computer Methods in Applied Mechanics and Engineering, 2013, 264, 163  crossref(new windwow)
8.
The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation, International Journal of Numerical Methods for Heat & Fluid Flow, 2014, 24, 8, 1636  crossref(new windwow)
9.
Optimal Homotopy Asymptotic Method for Solving Delay Differential Equations, Mathematical Problems in Engineering, 2013, 2013, 1  crossref(new windwow)
10.
Application of the hybrid functions to solve neutral delay functional differential equations, International Journal of Computer Mathematics, 2017, 94, 3, 503  crossref(new windwow)
11.
A meshless technique based on the local radial basis functions collocation method for solving parabolic–parabolic Patlak–Keller–Segel chemotaxis model, Engineering Analysis with Boundary Elements, 2015, 56, 129  crossref(new windwow)
12.
Differential Transform Method for Some Delay Differential Equations, Applied Mathematics, 2015, 06, 03, 585  crossref(new windwow)
13.
The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions, Computers & Mathematics with Applications, 2014, 68, 3, 212  crossref(new windwow)
 References
1.
A. Aminataei and M. M. Mazarei, Numerical solution of elliptic partial differential equarions using direct and indirect radial basis function networks, Euro. J. Scien. Res. 2 (2005), no. 2, p. 5

2.
A. Aminataei and M. Sharan, Using multiquadric method in the numerical solution of ODEs with a singularity point and PDEs in one and two dimensions, Euro. J. Scien. Res. 10 (2005), no. 2, p. 19

3.
R. Bellman, On the computational solution of differential-difference equations, J. Math. Anal. Appl. 2 (1961), 108-110 crossref(new window)

4.
A. Bellen and M. Zennaro, Adaptive integration of delay differential equations, Advances in time-delay systems, 155-165, Lect. Notes Comput. Sci. Eng., 38, Springer, Berlin, 2004

5.
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003

6.
R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, Vol. 20. Springer-Verlag, New York-Heidelberg, 1977

7.
L. E. El'sgol'ts and S. B. Norkin, Introduction to the Theory and Applications of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering, Vol. 105. Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973

8.
R. Franke, Scattered data interpolation: Tests of some methods, Math. Comput. 38 (1971), 181-199

9.
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74. Kluwer Academic Publishers Group, Dordrecht, 1992

10.
N. Guglielmi and E. Hairer, Implementing Radau IIA methods for stiff delay differential equations, Computing 67 (2001), no. 1, 1-12 crossref(new window)

11.
A. Halanay, Differential Equations: Stability, Sscillations, Time Lags, Academic Press, New York-London, 1966

12.
R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76 (1971), no. 8, 1705-1915

13.
R. L. Hardy, Theory and applications of the multiquadric-biharmonic method. 20 years of discovery 1968-1988, Comput. Math. Appl. 19 (1990), no. 8-9, 163-208 crossref(new window)

14.
E. J. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (1990), no. 8-9, 127-145 crossref(new window)

15.
E. J. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990), no. 8-9, 147-161 crossref(new window)

16.
V. B. Kolmanovskii and A. Myshkis, Applied Theory of Functional-Differential Equations, Mathematics and its Applications (Soviet Series), 85. Kluwer Academic Publishers Group, Dordrecht, 1992

17.
V. B. Kolmanovskii and V. R. Nosov, Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986

18.
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993

19.
E. Lelarsmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The waveform relaxation method for time domain analysis of large scale integrated circuits, IEEE Transactions on CAD 1 (1982), no. 3, 131-145 crossref(new window)

20.
W. R. Madych, Miscellaneous error bounds for multiquadric and related interpolators, Comput. Math. Appl. 24 (1992), no. 12, 121-138 crossref(new window)

21.
W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions. II, Math. Comp. 54 (1990), no. 189, 211-230 crossref(new window)

22.
N. Mai-Duy and T. Tran-Cong, Numerical solution of differential equations using multiquadric radial basis function networks, Neutral Networks 14 (2001), no.2 , 185-199 crossref(new window)

23.
C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986), no. 1, 11-22 crossref(new window)

24.
M. Zerroukut, H. Power, and C. S. Chen, A numerical method for heat transfer problems using collocation and radial basis functions, Internat. J. Numer. Methods Engrg. 42 (1998), no. 7, 1263-1278 crossref(new window)