JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMON FIXED POINT AND INVARIANT APPROXIMATION IN MENGER CONVEX METRIC SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMMON FIXED POINT AND INVARIANT APPROXIMATION IN MENGER CONVEX METRIC SPACES
Hussain, Nawab; Abbas, Mujahid; Kim, Jong-Kyu;
  PDF(new window)
 Abstract
Necessary conditions for the existence of common fixed points for noncommuting mappings satisfying generalized contractive conditions in a Menger convex metric space are obtained. As an application, related results on best approximation are derived. Our results generalize various well known results.
 Keywords
convex metric space;common fixed point;uniformly -commuting mapping;asymptotically S-nonexpansive mapping;best approximation;
 Language
English
 Cited by
1.
APPROXIMATION OF NEAREST COMMON FIXED POINTS OF ASYMPTOTICALLY I-NONEXPANSIVE MAPPINGS IN BANACH SPACES,;;;

대한수학회논문집, 2011. vol.26. 3, pp.483-498 crossref(new window)
1.
APPROXIMATION OF NEAREST COMMON FIXED POINTS OF ASYMPTOTICALLY I-NONEXPANSIVE MAPPINGS IN BANACH SPACES, Communications of the Korean Mathematical Society, 2011, 26, 3, 483  crossref(new windwow)
2.
Fixed Point Approximation of Generalized Nonexpansive Mappings in Hyperbolic Spaces, International Journal of Mathematics and Mathematical Sciences, 2015, 2015, 1  crossref(new windwow)
 References
1.
M. A. Al-Thagafi, Common fixed points and best approximation, J. Approx. Theory 85 (1996), no. 3, 318-323 crossref(new window)

2.
M. A. Al-Thagafi and N. Shahzad, Noncommuting selfmaps and invariant approximations, Nonlinear Anal. 64 (2006), no. 12, 2778-2786 crossref(new window)

3.
N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439 crossref(new window)

4.
I. Beg and M. Abbas, Fixed points and best approximation in Menger convex metric spaces, Arch. Math. (Brno) 41 (2005), no. 4, 389-397

5.
I. Beg and M. Abbas, Inequalities and fixed points in Menger convex metric spaces, Fixed point theory and applications. Vol. 7, 5-15, Nova Sci. Publ., New York, 2007

6.
I. Beg, D. R. Sahu, and S. D. Diwan, Approximation of fixed points of uniformly Rsubweakly commuting mappings, J. Math. Anal. Appl. 324 (2006), no. 2, 1105-1114 crossref(new window)

7.
A. Berard, Characterizations of metric spaces by the use of their midsets: Intervals, Fund. Math. 73 (1971/72), no. 1, 1-7

8.
L. M. Blumenthal, Distance Geometry, Clarendon Press, Oxford, 1953

9.
R. Chugh and S. Kumar, Common fixed points for weakly compatible maps, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 2, 241-247 crossref(new window)

10.
K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990

11.
M. D. Guay, K. L. Singh, and J. H. M. Whitfield, Fixed point theorems for nonexpansive mappings in convex metric spaces, Nonlinear analysis and applications (St. Johns, Nfld., 1981), pp. 179-189, Lecture Notes in Pure and Appl. Math., 80, Dekker, New York, 1982

12.
N. Hussain, On strong convergence to common fixed points of uniformly $C_{q}$-commuting maps, submitted

13.
N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl. 321 (2006), no. 2, 851-861 crossref(new window)

14.
N. Hussain, D. O'Regan, and R. P. Agarwal, Common fixed point and invariant approximation results on non-starshaped domains, Georgian Math. J. 12 (2005), no. 4, 659-669

15.
N. Hussain and B. E. Rhoades, $C_{q}$-commuting maps and invariant approximations, Fixed Point Theory Appl. 2006, Art. ID 24543, 9 pp crossref(new window)

16.
R. Khalil, Extreme points of the unit ball of Banach spaces, Math. Rep. Toyama Univ. 4 (1981), 41-45

17.
R. Khalil, Best approximation in metric spaces, Proc. Amer. Math. Soc. 103 (1988), no. 2, 579-586

18.
G. Meinardus, Invarianz bei linearen Approximationen, Arch. Rational Mech. Anal. 14 (1963), 301-303 crossref(new window)

19.
K. Menger, Untersuchungen uber allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75-163 crossref(new window)

20.
D. O'Regan and N. Hussain, Generalized I-contractions and point wise R-subweakly commuting maps, Acta Math. Sinica., (2007) (in press) crossref(new window)

21.
N. Shahzad, Invariant approximations and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001), no. 1, 39-45 crossref(new window)

22.
S. P. Singh, An application of a fixed-point theorem to approximation theory, J. Approx. Theory 25 (1979), no. 1, 89-90 crossref(new window)