JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE STABILITY OF A GENERALIZED CUBIC FUNCTIONAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE STABILITY OF A GENERALIZED CUBIC FUNCTIONAL EQUATION
Koh, Hee-Jeong; Kang, Dong-Seung;
  PDF(new window)
 Abstract
In this paper, we obtain the general solution of a generalized cubic functional equation, the Hyers-Ulam-Rassias stability, and the stability by using the alternative fixed point for a generalized cubic functional equation for a positive integer .
 Keywords
Hyers-Ulam-Rassias stability;cubic mapping;
 Language
English
 Cited by
1.
The generalized cubic functional equation and the stability of cubic Jordan $$*$$ ∗ -derivations, ANNALI DELL'UNIVERSITA' DI FERRARA, 2013, 59, 2, 235  crossref(new windwow)
2.
Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, Journal of Intelligent & Fuzzy Systems, 2016, 30, 4, 2309  crossref(new windwow)
 References
1.
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86 crossref(new window)

2.
H. Y. Chu and D. S. Kang, On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl. 325 (2007), no. 1, 595-607 crossref(new window)

3.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64 crossref(new window)

4.
J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309 crossref(new window)

5.
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434 crossref(new window)

6.
P. Gavrut¸a, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436 crossref(new window)

7.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224 crossref(new window)

8.
D. H. Hyers, G. Isac, and Th. M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publishing Company, Singapore, New jersey, London, 1997

9.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 crossref(new window)

10.
G. Isac and Th. M. Rassias, Stability of $\psi$-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219-228 crossref(new window)

11.
K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 867-878 crossref(new window)

12.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 crossref(new window)

13.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284 crossref(new window)

14.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 crossref(new window)

15.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378 crossref(new window)

16.
Th. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309

17.
I. A. Rus, Principles and Appications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979

18.
F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 crossref(new window)

19.
S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, 1960