ON THE STABILITY OF A GENERALIZED CUBIC FUNCTIONAL EQUATION Koh, Hee-Jeong; Kang, Dong-Seung;
Abstract
In this paper, we obtain the general solution of a generalized cubic functional equation, the Hyers-Ulam-Rassias stability, and the stability by using the alternative fixed point for a generalized cubic functional equation for a positive integer .
The generalized cubic functional equation and the stability of cubic Jordan $$*$$ ∗ -derivations, ANNALI DELL'UNIVERSITA' DI FERRARA, 2013, 59, 2, 235
2.
Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, Journal of Intelligent & Fuzzy Systems, 2016, 30, 4, 2309
References
1.
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86
2.
H. Y. Chu and D. S. Kang, On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl. 325 (2007), no. 1, 595-607
3.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64
4.
J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309
5.
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434
6.
P. Gavrut¸a, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436
7.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224
8.
D. H. Hyers, G. Isac, and Th. M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publishing Company, Singapore, New jersey, London, 1997
9.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153
10.
G. Isac and Th. M. Rassias, Stability of $\psi$-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219-228
11.
K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 867-878
12.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300
13.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284
14.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130
15.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378
16.
Th. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309
17.
I. A. Rus, Principles and Appications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979
18.
F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129
19.
S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, 1960