JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON LOWER RADICALS OF HEMIRINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON LOWER RADICALS OF HEMIRINGS
Zulfiqar, Muhammad;
  PDF(new window)
 Abstract
In this paper, we generalize a few results of [7, 10] for lower radical classes of rings, by using the limit ordinal construction for lower radical classes of hemirings.
 Keywords
hemiring;radical classes;universal class;semisimple class;homomorphically closed;p-semi-ideal;k-ideal;hereditary class;lower radical;
 Language
English
 Cited by
 References
1.
J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics, 54. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992

2.
U. Hebisch and H. J. Weinert, Semirings: algebraic theory and applications in computer science, Translated from the 1993 German original. Series in Algebra, 5. World Scientific Publishing Co., Inc., River Edge, NJ, 1998

3.
A. E. Hoffman and W. G. Leavitt, Properties inherited by the lower radical, Portugal. Math. 27 (1968), 63-66

4.
D. R. LaTorre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12 (1965), 219-226

5.
Y. L. Lee, On the construction of upper radical properties, Proc. Amer. Math. Soc. 19 (1968), 1165-1166

6.
Y. L. Lee, On the construction of lower radical properties, Pacific J. Math. 28 (1969), 393-395 crossref(new window)

7.
Y. L. Lee and R. E. Propes, On intersections and unions of radical classes, J. Austral. Math. Soc. 13 (1972), 354-356 crossref(new window)

8.
D. M. Olson and T. L. Jenksins, Radical theory for hemirings, J. Natur. Sci. Math. 23 (1983), no. 1, 23-32

9.
H. J. le Roux and G. A. P. Heyman, A note on the lower radical, Publ. Math. Debrecen 28 (1981), no. 1-2, 11-13

10.
F. A. Szasz, Radicals of Rings, Mathematical Institute Hungarian Academy of Sciences, 1981

11.
R. Wiegandt, Radical and Semisimple Classes of Rings, Queen's Papers in Pure and Applied Mathematics, No. 37. Queen's University, Kingston, Ont., 1974

12.
S. M. Yusuf and M. Shabir, Radical classes and semisimple classes for hemirings, Studia Sci. Math. Hungar. 23 (1988), no. 1-2, 231-235

13.
M. Zulfiqar, The sum of two radical classes of hemirings, Kyungpook Math. J. 43 (2003), no. 3, 371-374