JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ADAPTIVE MESH REFINEMENT FOR WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ADAPTIVE MESH REFINEMENT FOR WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES
Yoon, Dae-Ki; Kim, Hong-Joong; Hwang, Woon-Jae;
  PDF(new window)
 Abstract
In this paper, we describe the application procedure of the adaptive mesh refinement (AMR) for the weighted essentially non-oscillatory schemes (WENO), and observe the effects of the derived algorithm when problems have piecewise smooth solutions containing discontinuities. We find numerically that the dissipation of the WENO scheme can be lessened by the implementation of AMR while the accuracy is maintained. We deduce from the experiments that the AMR-implemented WENO scheme captures shocks more efficiently than the WENO method using uniform grids.
 Keywords
WENO scheme;adaptive mesh refinement;conservation laws;
 Language
English
 Cited by
1.
A novel optimization technique for explicit finite-difference schemes with application to AeroAcoustics, International Journal for Numerical Methods in Fluids, 2015, 78, 4, 189  crossref(new windwow)
2.
On the effective accuracy of spectral-like optimized finite-difference schemes for computational aeroacoustics, Journal of Computational Physics, 2014, 263, 222  crossref(new windwow)
3.
A Moving Mesh WENO Method for One-Dimensional Conservation Laws, SIAM Journal on Scientific Computing, 2012, 34, 4, A2317  crossref(new windwow)
4.
An adaptive version of Glimm's scheme, Acta Mathematica Scientia, 2010, 30, 2, 428  crossref(new windwow)
 References
1.
G. Jiang and C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996), no. 1, 202-228 crossref(new window)

2.
D. Kim and J. H. Kwon, A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis, J. Comput. Phys. 210 (2005), no. 2, 554-583 crossref(new window)

3.
C. W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No. 97-65, 1997

4.
D. Balsara and C. W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160 (2000), no. 2, 405-452 crossref(new window)

5.
J. Shi, C. Hu, and C. W. Shu, A technique of treating negative weights in weno schemes, J. Comput. Phys. 175, (2002), 108-127 crossref(new window)

6.
R. Wang, H. Feng, and R. J. Spiteri, Observations on the fifth-order WENO method with non-uniform meshes, Appl. Math. Comput. 196 (2008), no. 1, 433-447 crossref(new window)

7.
M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984), no. 3, 484-512 crossref(new window)

8.
M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989), 67-84 crossref(new window)

9.
J. Glimm, H. Kim, D. Sharp, and T. Wallstrom, A stochastic analysis of the scale up problem for flow in porous media, Comput. Appl. Math. 17 (1998), no. 1, 67-79

10.
C. W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shockcapturing schemes. II., J. Comput. Phys. 83 (1989), no. 1, 32-78 crossref(new window)

11.
R. Deiterding, Parallel adaptive simulation of multi-dimensional detonation structures, Ph. D. thesis, Brandenburgische Technische Universitat Cottbus, 2003

12.
M. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. on System. 21 (1991), no. 5, 1278-1286 crossref(new window)

13.
S. Li and J. M. Hyman, Adaptive mesh refinement for finite difference weno schemes, Technical Report LA-UR-03-8927, Los Alamos National Lab, 2003

14.
J. M. Hyman and S. Li, Interactive and dynamic control of adaptive mesh refinement with nested hierarchical grids, Technical Report LA-UR-98-5462, Los Alamos National Lab, 1998

15.
M. J. Berger and R. J. Leveque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2298-2316 crossref(new window)

16.
R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser, 1992