JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED GOTTLIEB SUBGROUPS AND SERRE FIBRATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED GOTTLIEB SUBGROUPS AND SERRE FIBRATIONS
Kim, Jae-Ryong;
  PDF(new window)
 Abstract
Let be a Serre fibration with fibre F. We prove that if the inclusion map has a left homotopy inverse r and admits a cross section , then . This is a generalization of the case of trivial fibration which has been proved by Lee and Woo in [8]. Using this result, we will prove that for the function space from a space A to a weak -space X where the evaluation map is regarded as a fibration.
 Keywords
generalized Gottlieb subgroups;Serre fibrations;G-sequence;
 Language
English
 Cited by
 References
1.
D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856. crossref(new window)

2.
D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. crossref(new window)

3.
B. Gray, Homotopy Theory, Academic Press, New York, 1975.

4.
Y. Hirato, K. Kuribayashi, and N. Oda, A function space model approach to the rational evaluation subgroups, Math. Z. 258 (2008), no. 3, 521-555. crossref(new window)

5.
J. R. Kim, Localizations and generalized evaluation subgroups of homotopy groups, J. Korean Math. Soc. 22 (1985), no. 1, 9-18.

6.
J. R. Kim and M. H. Woo, Certain subgroups of homotopy groups, J. Korean Math. Soc. 21 (1984), no. 2, 109-120.

7.
S. S. Koh, Note on the homotopy properties of the components of the mapping space $X^{s^p}$, Proc. Amer. Math. Soc. 11 (1960), 896-904.

8.
K. Y. Lee and M. H. Woo, Generalized evaluation subgroups of product spaces relative to a factor, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2255-2260. crossref(new window)

9.
K. Y. Lee and M. H. Woo, The G-sequence and the $\omega$-homology of a CW-pair, Topology Appl. 52 (1993), no. 3, 221-236. crossref(new window)

10.
K. Y. Lee and M. H. Woo, On the relative evaluation subgroups of a CW-pair, J. Korean Math. Soc. 25 (1988), no. 1, 149-160.

11.
K. L. Lim, On cyclic maps, J. Austral. Math. Soc. Ser. A 32 (1982), no. 3, 349-357. crossref(new window)

12.
K. Varadarajian, Generalised Gottlieb groups, J. Indian Math. Soc. (N.S.) 33 (1969), 141-164.

13.
H. Wada, Note on some mapping spaces, Tohoku Math. J. (2) 10 (1958), 143-145.