JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY OF HOMOMORPHISMS AND DERIVATIONS IN PROPER JCQ*-TRIPLES ASSOCIATED TO THE PEXIDERIZED CAUCHY TYPE MAPPING
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY OF HOMOMORPHISMS AND DERIVATIONS IN PROPER JCQ*-TRIPLES ASSOCIATED TO THE PEXIDERIZED CAUCHY TYPE MAPPING
Najati, Abbas; Eskandani, G. Zamani; Park, Choon-Kil;
  PDF(new window)
 Abstract
In this paper, we investigate homomorphisms in proper -triples and derivations on proper -triples associated to the following Pexiderized functional equation $$f(x+y+z)
 Keywords
generalized Hyers-Ulam stability;proper -triples homomorphism;proper -triples derivation;
 Language
Korean
 Cited by
1.
APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS,;;

대한수학회보, 2010. vol.47. 1, pp.195-209 crossref(new window)
1.
Hyers–Ulam–Rassias Stability of Derivations in Proper JCQ*–triples, Mediterranean Journal of Mathematics, 2013, 10, 3, 1391  crossref(new windwow)
 References
1.
J. P. Antoine, A. Inoue, and C. Trapani, $Partial^{\ast}$-algebras and Their Operator Realiza- tions, Mathematics and its Applications, 553. Kluwer Academic Publishers, Dordrecht, 2002.

2.
F. Bagarello, A. Inoue, and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2973-2980 crossref(new window)

3.
F. Bagarello and C. Trapani, States and representations of $CQ^\ast$-algebras, Ann. Inst. H. Poincare Phys. Theor. 61 (1994), no. 1, 103-133.

4.
F. Bagarello and C. Trapani, $CQ^\ast$-algebras: structure properties, Publ. Res. Inst. Math. Sci. 32 (1996), no.1, 85-116. crossref(new window)

5.
F. Bagarello and C. Morphisms of certain Banach $C^\ast$-modules, Publ. Res. Inst. Math. Sci. 36 (2000), no. 6, 681-705. crossref(new window)

6.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately ad- ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. crossref(new window)

7.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224. crossref(new window)

8.
G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Natur. Reihe 30 (1981), no. 6, 572-595.

9.
G. Lassner and G. A. Lassner, $Qu^\ast$-algebras and twisted product, Publ. Res. Inst. Math. Sci. 25 (1989), no. 2, 279-299. crossref(new window)

10.
A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi- Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl. 335 (2007), no. 2, 763-778. crossref(new window)

11.
C. Park, Homomorphisms between Poisson $JC^\ast$-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 79-97. crossref(new window)

12.
C. Park and Th. M. Rassias, Homomorphisms and derivations in proper $JCQ^\ast$-triples, J. Math. Anal. Appl. 337 (2008), no. 2, 1404-1414. crossref(new window)

13.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.

14.
S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London, 1960.