JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON THE GENERALIZED MYERS THEOREM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON THE GENERALIZED MYERS THEOREM
Yun, Jong-Gug;
  PDF(new window)
 Abstract
We provide a generalized Myers theorem under integral curvature bound and use this result to obtain a closure theorem in general relativity.
 Keywords
Myers theorem;Ricci curvature;
 Language
English
 Cited by
1.
A NOTE ON THE GENERALIZED MYERS THEOREM FOR FINSLER MANIFOLDS,;

대한수학회보, 2013. vol.50. 3, pp.833-837 crossref(new window)
1.
Compactness in Weighted Manifolds and Applications, Results in Mathematics, 2015, 68, 1-2, 143  crossref(new windwow)
2.
A NOTE ON THE GENERALIZED MYERS THEOREM FOR FINSLER MANIFOLDS, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 833  crossref(new windwow)
 References
1.
J. Beem, P. Ehrlich, and K. Easley, Global Lorentzian Geometry, 2nd edn., Marcel Dekker, New York, 1996.

2.
C. Chicone and P. Ehrlich, Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds, Manuscripta Math. 31 (1980), no. 1-3, 297-316. crossref(new window)

3.
P. E. Ehrlich, Y.-T. Jung, and S.-B. Kim, Volume comparison theorems for Lorentzian manifolds, Geom. Dedicata 73 (1998), no. 1, 39–56. crossref(new window)

4.
P. E. Ehrlich, Y.-T. Jung, J.-S. Kim, and S.-B. Kim, Jacobians and volume compar-ison for Lorentzian warped products, Recent advances in Riemannian and Lorentzian geometries (Baltimore, MD, 2003), 39–52, Contemp. Math., 337, Amer. Math. Soc., Providence, RI, 2003.

5.
P. E. Ehrlich and S.-B. Kim, From the Riccati inequality to the Raychaudhuri equa-tion, Differential geometry and mathematical physics (Vancouver, BC, 1993), 65–78,Contemp. Math., 170, Amer. Math. Soc., Providence, RI, 1994.

6.
P. E. Ehrlich and M. S´anchez, Some semi-Riemannian volume comparison theorems, Tohoku Math. J. (2) 52 (2000), no. 3, 331–348. crossref(new window)

7.
T. Frankel and G. J. Galloway, Energy density and spatial curvature in general relativity, J. Math. Phys. 22 (1981), no. 4, 813–817. crossref(new window)

8.
G. J. Galloway, A generalization of Myers' theorem and an application to relativistic cosmology, J. Differential Geom. 14 (1979), no. 1, 105–116

9.
S.-B. Kim and D.-S. Kim, A focal Myers-Galloway theorem on space-times, J. Korean Math. Soc. 31 (1994), no. 1, 97–110.

10.
S.-H. Paeng, Singularity theorem with weak timelike convergence condition, Preprint.

11.
C. Sprouse, Integral curvature bounds and bounded diameter, Comm. Anal. Geom. 8 (2000), no. 3, 531–543.