JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONGLY CLEAN MATRIX RINGS OVER NONCOMMUTATIVE LOCAL RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONGLY CLEAN MATRIX RINGS OVER NONCOMMUTATIVE LOCAL RINGS
Li, Bingjun;
  PDF(new window)
 Abstract
An element of a ring R with identity is called strongly clean if it is the sum of an idempotent and a unit that commute, and R is called strongly clean if every element of R is strongly clean. Let R be a noncommutative local ring, a criterion in terms of solvability of a simple quadratic equation in R is obtained for (R) to be strongly clean.
 Keywords
strongly clean ring;matrix ring;local ring;similarity;
 Language
English
 Cited by
1.
ON 2 × 2 STRONGLY CLEAN MATRICES,;

대한수학회보, 2013. vol.50. 1, pp.125-134 crossref(new window)
2.
QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS,;;

대한수학회보, 2014. vol.51. 3, pp.813-822 crossref(new window)
1.
Quasipolar Property of Generalized Matrix Rings, Communications in Algebra, 2014, 42, 9, 3883  crossref(new windwow)
2.
ON 2 × 2 STRONGLY CLEAN MATRICES, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 125  crossref(new windwow)
3.
Strongly Clean Matrices over Commutative Domains, Algebra Colloquium, 2014, 21, 02, 257  crossref(new windwow)
4.
Strongly clean matrices over arbitrary rings, Journal of Algebra, 2014, 399, 854  crossref(new windwow)
5.
StronglyJ-Clean Matrices Over Local Rings, Communications in Algebra, 2012, 40, 4, 1352  crossref(new windwow)
6.
PSEUDOPOLAR MATRIX RINGS OVER LOCAL RINGS, Journal of Algebra and Its Applications, 2014, 13, 03, 1350109  crossref(new windwow)
 References
1.
G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. crossref(new window)

2.
W. D. Burgess and P. Menal, On strongly $\pi$-regular rings and homomorphism into them, Comm. Algebra 16 (1988), no. 8, 1701-1725. crossref(new window)

3.
V. P. Camillo and H. P. Yu, Exchange rings, Units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. crossref(new window)

4.
V. P. Camillo and D. Khurana, A characterization of unit regular rings, Comm. Algebra 29 (2001), no. 5, 2293-2295. crossref(new window)

5.
J. Chen, X. Yang, and Y. Zhou, When is the 2 $\times$ 2 matrix ring over a commutative local ring, strongly clean?, J. Algebra 301 (2006), no. 1, 280-293. crossref(new window)

6.
J. Chen and Y. Zhou, Strongly clean power series rings, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 1, 73-85. crossref(new window)

7.
T. J. Dorsey, Cleanness and Strong Cleanness of Rings of Matrices, Dissertation, UC-Berkeley, 2006.

8.
J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. crossref(new window)

9.
T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 1991.

10.
Y. Li, Strongly clean matrix rings over local rings, J. Algebra 312 (2007), no. 1, 397-404. crossref(new window)

11.
W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. crossref(new window)

12.
W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. crossref(new window)

13.
Z. Wang and J. Chen, On two open problems about strongly clean rings, Bull. Austral. Math. Soc. 70 (2004), no. 2, 279-282. crossref(new window)