JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTES ON THE SUPERSTABILITY OF D`ALEMBERT TYPE FUNCTIONAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTES ON THE SUPERSTABILITY OF D`ALEMBERT TYPE FUNCTIONAL EQUATIONS
Cao, Peng; Xu, Bing;
  PDF(new window)
 Abstract
In this paper we will investigate the superstability of the generalized d`Alembert type functional equations ${\sum}^m_{i
 Keywords
d`Alembert functional equation;superstability;cosine function;
 Language
English
 Cited by
1.
On the superstability of the pexider type generalized trigonometric functional equations, Acta Mathematica Scientia, 2014, 34, 6, 1749  crossref(new windwow)
 References
1.
R. Badora and R. Ger, On some trigonometric functional inequalities, Functional equations-results and advances, 3–15, Adv. Math. (Dordr.), 3, Kluwer Acad. Publ., Dordrecht, 2002

2.
J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411–416

3.
J. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), no. 2, 242–246

4.
J. D'Alembert, Memoire sur les principes de la mecanique, Hist. Acad. Sci. (1769), 278–286

5.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998

6.
S.-M. Jung, On an asymptotic behavior of exponential functional equation, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 2, 583–586

7.
Pl. Kannappan, The functional equation f(xy)+$f(xy^{-1})$ = 2f(x)f(y) for groups, Proc. Amer. Math. Soc. 19 (1968), no. 1, 69–74

8.
Pl. Kannappan and G. H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Paedagogicae Cracoviensis–Studia Mathematica 1 (2001), 49–58

9.
G. H. Kim, The stability of d'Alembert and Jensen type functional equations, J. Math. Anal. Appl. 325 (2007), no. 1, 237–248

10.
A. Redouani, E. Elqorachi, and Th. M. Rassias, The superstability of d'Alembert's functional equation on step 2 nilpotent groups, Aequationes Math. 74 (2007), no. 3, 226–241 crossref(new window)

11.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23–130 crossref(new window)