JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOOLEAN REGULAR MATRICES AND THEIR STRONGLY PRESERVERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BOOLEAN REGULAR MATRICES AND THEIR STRONGLY PRESERVERS
Song, Seok-Zun; Kang, Kyung-Tae; Kang, Mun-Hwan;
  PDF(new window)
 Abstract
An mn Boolean matrix A is called regular if there exists an nm Boolean matrix X such that AXA
 Keywords
Boolean algebra;generalized inverse of a matrix;regular matrix;(U, V )-operator;
 Language
English
 Cited by
1.
On linear operators strongly preserving invariants of Boolean matrices, Czechoslovak Mathematical Journal, 2012, 62, 1, 169  crossref(new windwow)
 References
1.
L. B. Beasley and N. J. Pullman, Boolean-rank-preserving operators and Boolean-rank-1 spaces, Linear Algebra Appl. 59 (1984), 55–77 crossref(new window)

2.
J. Denes, Transformations and transformation semigroups, Seminar Report, University of Wisconsin, Madison, Wisconsin, 1976

3.
K. H. Kim, Boolean Matrix Theory and Applications, Pure and Applied Mathematics, Vol. 70, Marcel Dekker, New York, 1982

4.
R. D. Luce, A note on Boolean matrix theory, Proc. Amer. Math. Soc. 3 (1952), 382–388 crossref(new window)

5.
E. H. Moore, General analysis, Part I, Mem. of Amer. Phil. Soc. 1 (1935)

6.
R. J. Plemmons, Generalized inverses of Boolean relation matrices, SIAM J. Appl. Math. 20 (1971), 426–433 crossref(new window)

7.
P. S. S. N. V. Prasada Rao and K. P. S. Bhaskara Rao, On generalized inverses of Boolean matrices, Linear Algebra and Appl. 11 (1975), no. 2, 135–153

8.
D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc. 6 (1963), 49–53

9.
S. Z. Song, Linear operators that preserve column rank of Boolean matrices, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1085–1088

10.
S. Z. Song and K. T. Kang, Linear maps that preserve commuting pairs of matrices over general Boolean algebra, J. Korean Math. Soc. 43 (2006), no. 1, 77–86 crossref(new window)