JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES
Cho, Gyeong-Mi; Kim, Min-Kyung;
  PDF(new window)
 Abstract
In this paper we present new large-update primal-dual interior point algorithms for linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)
 Keywords
primal-dual interior point method;kernel function;complexity;polynomial algorithm;large-update;linear complementarity;path-following;
 Language
Korean
 Cited by
 References
1.
Y. Q. Bai, M. El Ghami, and C. Roos, A new efficient large-update primal-dual interiorpoint method based on a finite barrier, SIAM J. Optim. 13 (2002), no. 3, 766–782 crossref(new window)

2.
Y. Q. Bai, M. El Ghami, and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim. 15 (2004), no. 1, 101–128 crossref(new window)

3.
G. M. Cho, M. K. Kim, and Y. H. Lee, Complexity of large-update interior point algorithm for $P_*(\kappa)$ linear complementarity problems, Comput. Math. Appl. 53 (2007), no. 6, 948–960 crossref(new window)

4.
M. El Ghami, I. Ivanov, J. B. M. Melissen, C. Roos, and T. Steihaug, A polynomial-time algorithm for linear optimization based on a new class of kernel functions, Journal of Computational and Applied Mathematics, DOI 10.1016/j.cam.2008.05.027 crossref(new window)

5.
T. Illes and M. Nagy, A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems, European J. Oper. Res. 181 (2007), no. 3, 1097–1111 crossref(new window)

6.
M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A primal-dual interior point algorithm for linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 29–47, Springer, New York, 1989

7.
M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science, 538. Springer-Verlag, Berlin, 1991

8.
M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math. Programming 44 (1989), no. 1, (Ser. A), 1–26 crossref(new window)

9.
M. Kojima, S. Mizuno, and A. Yoshise, An O($\sqrt{n}$L) iteration potential reduction algorithm for linear complementarity problems, Math. Programming 50 (1991), no. 3, (Ser. A), 331–342 crossref(new window)

10.
N. Megiddo, Pathways to the optimal set in linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 131–158, Springer, New York, 1989

11.
J. Miao, A quadratically convergent O(($\kappa + 1)\sqrt{n}$L)-iteration algorithm for the $P_*(\kappa)$-matrix linear complementarity problem, Math. Programming 69 (1995), no. 3, Ser. A, 355–368 crossref(new window)

12.
J. Peng, C. Roos, and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Math. Program. 93 (2002), no. 1, Ser. A, 129–171 crossref(new window)

13.
C. Roos, T. Terlaky, and J. Ph. Vial, Theory and Algorithms for Linear Optimization, An interior point approach. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Ltd., Chichester, 1997

14.
U. Schafer, A linear complementarity problem with a P-matrix, SIAM Rev. 46 (2004), no. 2, 189–201 crossref(new window)