JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MAPS IN MINIMAL INJECTIVE RESOLUTIONS OF MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MAPS IN MINIMAL INJECTIVE RESOLUTIONS OF MODULES
Lee, Ki-Suk;
  PDF(new window)
 Abstract
We investigate the behavior of maps in minimal injective resolution of an A-module M when (m,M) = 1 for some t, and we develop slightly the fact that a module of type 1 is Cohen-Macaulay.
 Keywords
Bass numbers;minimal injective resolutions;type of modules;Cohen-Macaulay rings;
 Language
English
 Cited by
1.
SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS,;

충청수학회지, 2014. vol.27. 4, pp.625-633 crossref(new window)
1.
SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS, Journal of the Chungcheong Mathematical Society, 2014, 27, 4, 625  crossref(new windwow)
 References
1.
Y. Aoyama, Complete local (S$_{n−1}$) rings of type n$\geq$3 are Cohen-Macaulay, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 3, 80–83

2.
H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28 crossref(new window)

3.
D. Costa, C. Huneke, and M. Miller, Complete local domains of type two are Cohen-Macaulay, Bull. London Math. Soc. 17 (1985), no. 1, 29–31 crossref(new window)

4.
H.-B. Foxby, On the $\mu^i$ in a minimal injective resolution. II, Math. Scand. 41 (1977), no. 1, 19–44

5.
T. Kawasaki, Local rings of relatively small type are Cohen-Macaulay, Proc. Amer. Math. Soc. 122 (1994), no. 3, 703–709

6.
J. Koh, M. Kim, and K. Lee, Applications of $SC_r$-condition to Bass numbers of modules, in preparation

7.
K. Lee, A note on types of Noetherian local rings, Bull. Korean Math. Soc. 39 (2002), no. 4, 645–652 crossref(new window)

8.
K. Lee, On types of Noetherian local rings and modules, J. Korean Math. Soc. 44 (2007), no. 4, 987–995 crossref(new window)

9.
T. Marley, Unmixed local rings of type two are Cohen-Macaulay, Bull. London Math. Soc. 23 (1991), no. 1, 43–45 crossref(new window)

10.
P. Roberts, Homological Invariants of Modules over Commutative Rings, Presses de l'Universite de Montreal, Montreal, Que., 1980

11.
P. Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987), 417–436, Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989

12.
P. Roberts, Rings of type 1 are Gorenstein, Bull. London Math. Soc. 15 (1983), no. 1, 48–50 crossref(new window)

13.
W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, No. 14. Notas de Matematica No. 53. [Notes on Mathematics, No. 53] North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974