JOURNAL BROWSE
Search
Advanced SearchSearch Tips
η-PARALLEL CONTACT 3-MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
η-PARALLEL CONTACT 3-MANIFOLDS
Cho, Jong-Taek; Lee, Ji-Eun;
  PDF(new window)
 Abstract
In this paper, we give a classification of contact 3-manifolds whose Ricci tensors are -parallel.
 Keywords
contact 3-manifolds;-parallel Ricci tensors;critical metrics;
 Language
Korean
 Cited by
 References
1.
D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, 2002

2.
D. E. Blair, Critical associated metrics on contact manifolds, J. Austral. Math. Soc. Ser. A 37 (1984), no. 1, 82–88 crossref(new window)

3.
D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geometry and topology, 15–30, World Sci. Publishing, Singapore, 1989

4.
D. E. Blair, T. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with Q$\phi = \phi$Q, Kodai Math. J. 13 (1990), no. 3, 391–401 crossref(new window)

5.
D. E. Blair and R. Sharma, Three-dimensional locally symmetric contact metric manifolds, Boll. Un. Mat. Ital. A (7) 4 (1990), no. 3, 385–390

6.
D. E. Blair and L. Vanhecke, Symmetries and A-symmetric spaces, Tohoku Math. J. (2) 39 (1987), no. 3, 373–383

7.
E. Boeckx and J. T. Cho, Locally symmetric contact metric manifolds, Monatsh. Math. 148 (2006), no. 4, 269–281 crossref(new window)

8.
E. Boeckx, P. Bueken, and L. Vanhecke, A-symmetric contact metric spaces, Glasg. Math. J. 41 (1999), no. 3, 409–416

9.
G. Calvaruso, D. Perrone, and L. Vanhecke, Homogeneity on three-dimensional contact metric manifolds, Israel J. Math. 114 (1999), 301–321 crossref(new window)

10.
S. S. Chern and R. S. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, With an appendix by Alan Weinstein. Lecture Notes in Math., 1111, Workshop Bonn 1984 (Bonn, 1984), 279–308, Springer, Berlin, 1985 crossref(new window)

11.
F. Gouli-Andreou and P. J. Xenos, On 3-dimensional contact metric manifolds with $\nabla_{\varepsilon \tau}$= 0, J. Geom. 62 (1998), no. 1-2, 154–165 crossref(new window)

12.
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329 crossref(new window)

13.
D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodai Math. J. 13 (1990), no. 1, 88–100 crossref(new window)

14.
D. Perrone, Weakly $\phi$-symmetric contact metric spaces, Balkan J. Geom. Appl. 7 (2002), no. 2, 67–77

15.
T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91–113

16.
S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349–379