JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE COMPLEX OSCILLATION OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE COMPLEX OSCILLATION OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
Liu, Kai; Yang, Lian-Zhong;
  PDF(new window)
 Abstract
In this paper, we investigate the growth of solutions and the existence of subnormal solutions for a class of higher order linear differential equations. We obtain some results which improve and extend the results of Chen-Shon [2] and Gundersen-Steinbart [5].
 Keywords
periodic differential equation;subnormal solution;e-type order;
 Language
English
 Cited by
 References
1.
T. B. Cao and H. X. Yi, On the complex oscillation of higher order linear differential equations with meromorphic coefficients, J. Syst. Sci. Complex. 20 (2007), no. 1, 135. 148 crossref(new window)

2.
Z. X. Chen and K. H. Shon, On subnormal solutions of second order linear periodic differential equations, Sci. China Ser. A 50 (2007), no. 6, 786.800 crossref(new window)

3.
Y. M. Chiang and S. A. Gao, On a problem in complex oscillation theory of periodic second order linear differential equations and some related perturbation results, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 273.290

4.
G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88.104 crossref(new window)

5.
G. Gundersen and E. M. Steinbart, Subnormal solutions of second order linear differential equations with periodic coefficients, Results Math. 25 (1994), no. 3-4, 270.289 crossref(new window)

6.
G. Jank and L. Volkmann, Einfuhrung in die Theorie der ganzen und Meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhauser Verlag, Besel, 1985

7.
L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), no. 4, 385.405

8.
I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co., Berlin, 1993

9.
H. Wittich, Subnormale Losungen der Differentialgleichung: $$w^{\prime\prime}+p(e^{z})w^{\prime}+q(e^{z})w$=0, Nagoya Math. J. 30 (1967), 29.37 crossref(new window)

10.
C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003