JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMAL ERROR ESTIMATE FOR SEMI-DISCRETE GAUGE-UZAWA METHOD FOR THE NAVIER-STOKES EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPTIMAL ERROR ESTIMATE FOR SEMI-DISCRETE GAUGE-UZAWA METHOD FOR THE NAVIER-STOKES EQUATIONS
Pyo, Jae-Hong;
  PDF(new window)
 Abstract
The gauge-Uzawa method which has been constructed in [11] is a projection type method to solve the evolution Navier-Stokes equations. The method overcomes many shortcomings of projection methods and displays superior numerical performance [11, 12, 15, 16]. However, we have obtained only suboptimal accuracy via the energy estimate in [11]. In this paper, we study semi-discrete gauge-Uzawa method to prove optimal accuracy via energy estimate. The main key in this proof is to construct the intermediate equation which is formed to gauge-Uzawa algorithm. We will estimate velocity errors via comparing with the intermediate equation and then evaluate pressure errors via subtracting gauge-Uzawa algorithm from Navier-Stokes equations.
 Keywords
projection method;gauge method;Uzawa method;gauge-Uzawa method;avier-Stokes equation;incompressible fluids;
 Language
English
 Cited by
1.
A gauge-Uzawa finite element method for the time-dependent Viscoelastic Oldroyd flows, Journal of Mathematical Analysis and Applications, 2015, 425, 1, 96  crossref(new windwow)
2.
A partitioned finite element scheme based on Gauge-Uzawa method for time-dependent MHD equations, Numerical Algorithms, 2017  crossref(new windwow)
 References
1.
D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 168 (2001), no. 2, 464–499 crossref(new window)

2.
A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22(1968), 745–762

3.
P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press, 1988

4.
M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal. 20 (1989), no.1, 74–97 crossref(new window)

5.
Weinan E. and J.-G. Liu, Gauge method for viscous incompressible flows, Comm. Math. Sci. 1 (2003), 317–332

6.
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986

7.
J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275–311

8.
R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Functional Analysis 21 (1976), no. 4, 397–431 crossref(new window)

9.
R. H. Nochetto and J.-H. Pyo, Optimal relaxation parameter for the Uzawa method, Numer. Math. 98 (2004), no. 4, 695–702 crossref(new window)

10.
R. H. Nochetto and J.-H. Pyo, Error estimates for semi-discrete gauge methods for the Navier-Stokes equations, Math. Comp. 74 (2005), no. 250, 521–542 crossref(new window)

11.
R. H. Nochetto and J.-H. Pyo, The gauge-Uzawa finite element method. I. The Navier-Stokes equations, SIAM J. Numer. Anal. 43 (2005), no. 3, 1043–1068 crossref(new window)

12.
R. H. Nochetto and J.-H. Pyo, The gauge-Uzawa finite element method. II. The Boussinesq equations, Math. Models Methods Appl. Sci. 16 (2006), no. 10, 1599–1626

13.
A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations, Advances in Numerical Mathematics. B. G. Teubner, Stuttgart, 1997

14.
J.-H. Pyo, The gauge-Uzawa and related projection finite element methods for the evolution Navier-Stokes equations, Ph.D. dissertation, University of Maryland, 2002

15.
J.-H. Pyo and J. Shen, Normal mode analysis of second-order projection methods for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), no. 3, 817–840

16.
J.-H. Pyo and J. Shen, Gauge-Uzawa methods for incompressible flows with variable density, J. Comput. Phys. 221 (2007), no. 1, 181–197 crossref(new window)

17.
R. T´emam, Sur l'approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires. II, Arch. Rational Mech. Anal. 33 (1969), 377–385

18.
C. Wang and J.-G. Liu, Convergence of gauge method for incompressible flow, Math. Comp. 69 (2000), no. 232, 1385–1407 crossref(new window)