JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS
Roopkumar, Rajakumar;
  PDF(new window)
 Abstract
The ridgelet transform is extended to the space of square integrable Boehmians. It is proved that the extended ridgelet transform is consistent with the classical ridgelet transform R, linear, one-to-one, onto and both , .1 are continuous with respect to -convergence as well as -convergence.
 Keywords
Boehmians;convolution;ridgelet transform;
 Language
English
 Cited by
1.
Curvelet transform for Boehmians, Arab Journal of Mathematical Sciences, 2014, 20, 2, 264  crossref(new windwow)
2.
Multidimensional Quaternionic Gabor Transforms, Advances in Applied Clifford Algebras, 2016, 26, 3, 985  crossref(new windwow)
3.
CONVOLUTION THEOREMS FOR FRACTIONAL FOURIER COSINE AND SINE TRANSFORMS AND THEIR EXTENSIONS TO BOEHMIANS, Communications of the Korean Mathematical Society, 2016, 31, 4, 791  crossref(new windwow)
4.
Stockwell transform for Boehmians, Integral Transforms and Special Functions, 2013, 24, 4, 251  crossref(new windwow)
5.
Boehmians ofLp- growth, Integral Transforms and Special Functions, 2016, 27, 8, 653  crossref(new windwow)
6.
Image compression approach with ridgelet transformation using modified neuro modeling for biomedical images, Neural Computing and Applications, 2014, 24, 7-8, 1725  crossref(new windwow)
7.
Poisson transform on Boehmians, Applied Mathematics and Computation, 2010, 216, 9, 2740  crossref(new windwow)
8.
EXTENDED RIDGELET TRANSFORM ON DISTRIBUTIONS AND BOEHMIANS, Asian-European Journal of Mathematics, 2011, 04, 03, 507  crossref(new windwow)
9.
Quaternionic Stockwell transform, Integral Transforms and Special Functions, 2016, 27, 6, 484  crossref(new windwow)
10.
Quaternionic curvelet transform, Optik - International Journal for Light and Electron Optics, 2017, 131, 255  crossref(new windwow)
11.
A unified extension of Stieltjes and Poisson transforms to Boehmians, Integral Transforms and Special Functions, 2011, 22, 3, 195  crossref(new windwow)
12.
FOURIER SINE AND COSINE TRANSFORMS ON BOEHMIAN SPACES, Asian-European Journal of Mathematics, 2013, 06, 01, 1350005  crossref(new windwow)
 References
1.
T. K. Boehme, The support of Mikusi´nski operators, Trans. Amer. Math. Soc. 176 (1973), 319–334 crossref(new window)

2.
E. J. Cand`es, Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal. 6 (1999), no. 2, 197–218 crossref(new window)

3.
V. Karunakaran and N. V. Kalpakam, Hilbert transform for Boehmians, Integral Transforms, Spec. Funct. 9 (2000), no. 1, 19–36 crossref(new window)

4.
V. Karunakaran and R. Roopkumar, Boehmians and their Hilbert transforms, Integral Transforms Spec. Funct. 13 (2002), no. 2, 131–141 crossref(new window)

5.
V. Karunakaran and R. Roopkumar, Ultra Boehmians and their Fourier transforms, Fract. Calc. Appl. Anal. 5 (2002), no. 2, 181–194

6.
P. Mikusinski, Convergence of Boehmians, Jpn. J. Math. 9 (1983), no. 1, 159–179

7.
P. Mikusinski, Fourier transform for integrable Boehmians, Rocky Mountain J. Math. 17 (1987), no. 3, 577–582

8.
P. Mikusinski, On flexibility of Boehmians, Integral Transforms Spec. Funct. 4 (1996), no. 1-2, 141–146 crossref(new window)

9.
P. Mikusi´nski, A. Morse, and D. Nemzer, The two-sided Laplace transform for Boehmians, Integral Transforms Spec. Funct. 2 (1994), no. 3, 219–230 crossref(new window)

10.
D. Nemzer, The Laplace transform on a class of Boehmians, Bull. Aust. Math. Soc. 46 (1992), no. 2, 347–352

11.
R. Roopkumar, Wavelet analysis on a Boehmian space, Int. J. Math. Math. Sci. 2003 (2003), no. 15, 917–926 crossref(new window)

12.
R. Roopkumar, Generalized Radon transform, Rocky Mountain J. Math. 36 (2006), no. 4, 1375–1390

13.
R. Roopkumar, Stieltjes transform for Boehmians, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 819–827 crossref(new window)

14.
W. Rudin, Real and Complex Analysis, Mc. Graw Hill Inc., New York, 1987

15.
J. L. Starck, E. J. Cand`es, and D. Donoho, The curvelet transform for image denoising, IEEE Trans. Image Process. 11 (2002), no. 6, 670–684 crossref(new window)

16.
A. I. Zayed and P. Mikusinski, On the extension of the Zak transform, Methods Appl. Anal. 2 (1995), no. 2, 160–172