JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS
Wei, Feng; Xiao, Zhankui;
  PDF(new window)
 Abstract
Let n be a fixed positive integer, R be a 2n!-torsion free prime ring and , be a pair of generalized derivations on R. If < > = 0 for all x R, then and are either left multipliers or right multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-torsion free prime ring with the center and d, g be a pair of derivations on R. If < , > for all x R, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.
 Keywords
(generalized-)derivation;(semi-)prime ring;Banach algebra;
 Language
English
 Cited by
1.
GENERALIZED DERIVATIONS AND DERIVATIONS OF RINGS AND BANACH ALGEBRAS,;

호남수학학술지, 2013. vol.35. 4, pp.625-637 crossref(new window)
1.
GENERALIZED DERIVATIONS AND DERIVATIONS OF RINGS AND BANACH ALGEBRAS, Honam Mathematical Journal, 2013, 35, 4, 625  crossref(new windwow)
 References
1.
E. Alba¸s and N. Arga¸c, Generalized derivations of prime rings, Algebra Colloq. 11 (2004), no. 3, 399–410

2.
K. I. Beidar, Quotient rings of semiprime rings, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1978), no. 5, 36–43

3.
M. Bresar, On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47 (1993), no. 2, 291–296

4.
I.-S. Chang, K.-W. Jun, and Y.-S. Jung, On derivations in Banach algebras, Bull. Korean Math. Soc. 39 (2002), no. 4, 635–643 crossref(new window)

5.
L.-O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415–421

6.
J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. (2) 16 (1977), no. 3, 493–500 crossref(new window)

7.
B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166 crossref(new window)

8.
Y.-S. Jung and K.-H. Park, On generalized $({\alpha},{\beta})$ -derivations and commutativity in prime rings, Bull. Korean Math. Soc. 43 (2006), no. 1, 101–106 crossref(new window)

9.
Y.-S. Jung and K.-H. Park, On prime and semiprime rings with permuting 3-derivations, Bull. Korean Math. Soc. 44 (2007), no. 4, 789–794 crossref(new window)

10.
E.-H. Lee, Y.-S. Jung, and I.-S. Chang, Derivations on prime and semi-prime rings, Bull. Korean Math. Soc. 39 (2002), no. 3, 485–494 crossref(new window)

11.
T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27–38

12.
M. Mathieu and V. Runde, Derivations mapping into the radical. II, Bull. London Math. Soc. 24 (1992), no. 5, 485–487

13.
K.-H. Park, Y.-S. Jung, and J.-H. Bae, Derivations in Banach algebras, Int. J. Math. Math. Sci. 29 (2002), no. 10, 579–583 crossref(new window)

14.
E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100 crossref(new window)

15.
A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209–214 crossref(new window)

16.
A. M. Sinclair, Automatic Continuity of Linear Operators, London Mathematical Society Lecture Note Series, No. 21. Cambridge University Press, Cambridge-New York-Melbourne, 1976

17.
I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264 crossref(new window)

18.
M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435–460

19.
M. P. Thomas, Primitive ideals and derivations on noncommutative Banach algebras, Pacific J. Math. 159 (1993), no. 1, 139–152

20.
J. Vukman, Identities with derivations on rings and Banach algebras, Glas. Mat. Ser. III 40(60) (2005), no. 2, 189–199

21.
F. Wei, *-generalized differential identities of semiprime rings with involution, Houston J. Math. 32 (2006), no. 3, 665–681

22.
F.Wei and Z.-K. Xiao, Pairs of derivations on rings and Banach algebras, Demonstratio Math. 41 (2008), no. 2, 297–308