JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DIRAC EIGENVALUES ESTIMATES IN TERMS OF DIVERGENCEFREE SYMMETRIC TENSORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DIRAC EIGENVALUES ESTIMATES IN TERMS OF DIVERGENCEFREE SYMMETRIC TENSORS
Kim, Eui-Chul;
  PDF(new window)
 Abstract
We proved in [10] that Friedrich`s estimate [5] for the first eigenvalue of the Dirac operator can be improved when a Codazzi tensor exists. In the paper we further prove that his estimate can be improved as well via a well-chosen divergencefree symmetric tensor. We study the geometric implication of the new first eigenvalue estimates over Sasakian spin manifolds and show that some particular types of spinors appear as the limiting case.
 Keywords
Dirac operator;eigenvalues;divergencefree symmetric tensors;
 Language
English
 Cited by
1.
SASAKIAN TWISTOR SPINORS AND THE FIRST DIRAC EIGENVALUE,;

대한수학회지, 2016. vol.53. 6, pp.1347-1370 crossref(new window)
2.
THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS,;

대한수학회보, 2013. vol.50. 2, pp.431-440 crossref(new window)
1.
THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS, Bulletin of the Korean Mathematical Society, 2013, 50, 2, 431  crossref(new windwow)
2.
Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds, Differential Geometry and its Applications, 2010, 28, 6, 648  crossref(new windwow)
3.
Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds, Annals of Global Analysis and Geometry, 2014, 45, 1, 67  crossref(new windwow)
 References
1.
I. Agricola and Th. Friedrich, The Casimir operator of a metric connection with skewsymmetric torsion, J. Geom. Phys. 50 (2004), no. 1-4, 188–204 crossref(new window)

2.
C. Bar, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), no. 3, 509–521 crossref(new window)

3.
H. Baum, Th. Friedrich, R. Grunewald, and I. Kath, Twistors and Killing Spinors on Riemannian Manifolds, Teubner, Leipzig/Stuttgart, 1991

4.
C. P. Boyer, K. Galicki, and P. Matzeu, On eta-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), no. 1, 177–208 crossref(new window)

5.
Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980), 117– 146 crossref(new window)

6.
Th. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, Providence, RI, 2000

7.
Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), no. 2, 303–335

8.
Th. Friedrich and S. Ivanov, Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math. 559 (2003), 217–236 crossref(new window)

9.
Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1-2, 128–172 crossref(new window)

10.
Th. Friedrich and E. C. Kim, Eigenvalues estimates for the Dirac operator in terms of Codazzi tensors, Bull. Korean Math. Soc. 45 (2008), no. 2, 365–373 crossref(new window)

11.
K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kahler manifolds of positive scalar curvature, Ann. Global Anal. Geom. 4 (1986), no. 3, 291–325

12.
M, Wang, Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), no. 1, 59–68